
Secure compilation
with the compiler, not against

First experiments on “Tracing LLVM”

Secure compilation
with the compiler, not against

First experiments on “Tracing LLVM”

Sébastien MICHELLAND (UGA/LCIS, Valence)

Journées Nationales du GDR Sécurité 2025 — June 24th, 2025

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

Your last speaker of the day!

Sébastien Michelland

▶ 3rd-year Ph.D student at LCIS (Valence)
▶ Advised by Laure Gonnord and Christophe Deleuze

▶ Compilers
▶ Embedded systems
▶ Formal verification (* rainy days only)

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 2/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

1

Dealing with
fault injection attacks

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 2/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

Fault injections are wild...

Fault: abnormal condition leading to incorrect behavior

2 + 2 → something goes wrong → 42

Fault injection: creating a fault on purpose

Electromagnetic fault injection [Sol+21]

Power/clock glitches, lasers, EM pulses...

Challenges
▶ Can hardly predict outcomes
▶ Some consistent behaviors
▶ Many very rare and very weird behaviors

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 3/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

Fault injections are wild...

Fault: abnormal condition leading to incorrect behavior

2 + 2 → something goes wrong → 42

Fault injection: creating a fault on purpose

Electromagnetic fault injection [Sol+21]

Power/clock glitches, lasers, EM pulses...

Challenges
▶ Can hardly predict outcomes
▶ Some consistent behaviors
▶ Many very rare and very weird behaviors

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 3/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

... so we approximate with fault models.

Fault model: approximate description of common fault behaviors

Examples:

▶ Invert an if() ◀ C source
▶ Corrupt program values ◀ IR-ish
▶ Skip instructions ◀ Assembly
▶ Cancel pipeline forwarding [Lau20] ◀ Micro-arch

Understandable

Accurate

Inherent tension
Fault models are always a compromise between accuracy and simplicity.

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 4/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

... so we approximate with fault models.

Fault model: approximate description of common fault behaviors

Examples:

▶ Invert an if() ◀ C source
▶ Corrupt program values ◀ IR-ish
▶ Skip instructions ◀ Assembly
▶ Cancel pipeline forwarding [Lau20] ◀ Micro-arch

Understandable

Accurate

Inherent tension
Fault models are always a compromise between accuracy and simplicity.

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 4/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

Getting countermeasures consistent is hard!

Fault
injections

Fault
models

Counter-
measures

Security
properties

Modeled by Countered by Guarantees

Future
evolutions?

Inherently
approximate Weaknesses

Lack of
specification

Multi-fault
injections

Targeted
attacks

Use lowest-level
models possible

Semantics and secure compilationMy Ph.D:

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 5/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

Getting countermeasures consistent is hard!

Fault
injections

Fault
models

Counter-
measures

Security
properties

Modeled by Countered by Guarantees

Future
evolutions?

Inherently
approximate Weaknesses

Lack of
specification

Multi-fault
injections

Targeted
attacks

Use lowest-level
models possible

Semantics and secure compilationMy Ph.D:

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 5/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

Getting countermeasures consistent is hard!

Fault
injections

Fault
models

Counter-
measures

Security
properties

Modeled by Countered by Guarantees

Future
evolutions?

Inherently
approximate Weaknesses

Lack of
specification

Multi-fault
injections

Targeted
attacks

Use lowest-level
models possible

Semantics and secure compilationMy Ph.D:

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 5/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

Getting countermeasures consistent is hard!

Fault
injections

Fault
models

Counter-
measures

Security
properties

Modeled by Countered by Guarantees

Future
evolutions?

Inherently
approximate Weaknesses

Lack of
specification

Multi-fault
injections

Targeted
attacks

Use lowest-level
models possible

Semantics and secure compilationMy Ph.D:

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 5/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

2

Use lowest-level models possible

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 5/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

Precise attack models are low-level and tricky

Fetch skips by Alshaer et al. [Als+22]

c.addi a0, a0, 1 lw a0, 144(a1)

(lw cont.) c.ret

▼ Skip 32 bits!

c.addi a0, a0, 1 lw a0, 144(a1)

addi s2, s2, 1 c.ret

▶ Found on ARM and RISC-V
▶ Can corrupt instructions
▶ Can affect more than one instruction

Typical abstraction compromise!
▶ Brings in pipeline details
▶ More precise than instruction skip
▶ Harder to deal with

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 6/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

But co-design can deal with them!
Paper: From low-level fault modeling to a proven hardening scheme — CC’24 [MDG24]

Co-designed countermeasure with nice properties!

▶ Simple implementation on both ends
▶ HW computes checksum of executed opcodes
▶ SW tests it before every jump

▶ Formalized and proven
▶ Attacks will crash or be detected quickly

▶ Reasonable performance
▶ For a strong attacker, 10% time, 2.5x space
▶ Usual instruction skip CM are 4x time/space

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 7/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

But co-design can deal with them!
Paper: From low-level fault modeling to a proven hardening scheme — CC’24 [MDG24]

Co-designed countermeasure with nice properties!

▶ Simple implementation on both ends
▶ HW computes checksum of executed opcodes
▶ SW tests it before every jump

▶ Formalized and proven
▶ Attacks will crash or be detected quickly

▶ Reasonable performance
▶ For a strong attacker, 10% time, 2.5x space
▶ Usual instruction skip CM are 4x time/space

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 7/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

Still, we can’t be just low-level.

The security property is just “normal behavior or exception”.
▶ What about denial of service? Real-time violations? Data leaks?
▶ Also not everything needs to be protected...

Requirement:
▶ Source should be able to provide security annotations.

Often missing at the SW/HW interface
▶ Most hardware countermeasures against faults only do functionality
▶ Also a social problem!

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 8/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

3

Semantics and secure compilation

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 8/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

There is an abstraction gap between attacks and requirements...

Programmer

C source code

Compiler

LLVM IR

SelectionDAG

Machine IR
Object code

Libraries Runtime
Linker

Executable code

Execution

User’s security requirements

Countermeasure somehow
needs to work through
all these.

Accurate model of the attack
Real attack

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 9/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

There is an abstraction gap between attacks and requirements...

Programmer

C source code

Compiler

LLVM IR

SelectionDAG

Machine IR
Object code

Libraries Runtime
Linker

Executable code

Execution

User’s security requirements

Countermeasure somehow
needs to work through
all these.

Accurate model of the attack
Real attack

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 9/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

There is an abstraction gap between attacks and requirements...

Programmer

C source code

Compiler

LLVM IR

SelectionDAG

Machine IR
Object code

Libraries Runtime
Linker

Executable code

Execution

User’s security requirements

Countermeasure somehow
needs to work through
all these.

Accurate model of the attack
Real attack

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 9/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

There is an abstraction gap between attacks and requirements...

Programmer

C source code

Compiler

LLVM IR

SelectionDAG

Machine IR
Object code

Libraries Runtime
Linker

Executable code

Execution

User’s security requirements

Countermeasure somehow
needs to work through
all these.

Accurate model of the attack
Real attack

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 9/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

... which only the compiler can properly deal with.

Typically:
▶ Harden everything; no control from source code like annotations
▶ Harden close to source; no control of assembly (and pray for -O0 to work)
▶ Compiler optimizations ruin your day
▶ Tricks to avoid breakage: volatile abuse, inline assembly, disable passes...

// can you see what's wrong with this?
void *(* volatile memset_ptr)(void *, int, size_t) = &memset;
memset_ptr(array, 0, sizeof array);

Glaringly insufficient: subtle bugs, no formal guarantees, always a pain.

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 10/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

Let’s make the compiler a first-class objective.

Source annotations;
countermeasures

to use and options

Secure application
end-developer

Hardening passes
using tracing API

Countermeasures
security engineer

Preserves and tracks
aspects across

abstraction levels

Tracing LLVM
compiler engineer

relies on relies on

Tracing LLVM: extension of LLVM, currently focused on RISC-V
▶ Adds semantic tools that preserve and trace elements of the program
▶ (Ongoing) Provides an API for querying and accessing traced objects
▶ Is intended to be used as a “countermeasure toolbox”

Open-source at https://gricad-gitlab.univ-grenoble-alpes.fr/tracing-llvm

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 11/17

https://gricad-gitlab.univ-grenoble-alpes.fr/tracing-llvm

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

Let’s make the compiler a first-class objective.

Source annotations;
countermeasures

to use and options

Secure application
end-developer

Hardening passes
using tracing API

Countermeasures
security engineer

Preserves and tracks
aspects across

abstraction levels

Tracing LLVM
compiler engineer

relies on relies on

Tracing LLVM: extension of LLVM, currently focused on RISC-V
▶ Adds semantic tools that preserve and trace elements of the program
▶ (Ongoing) Provides an API for querying and accessing traced objects
▶ Is intended to be used as a “countermeasure toolbox”

Open-source at https://gricad-gitlab.univ-grenoble-alpes.fr/tracing-llvm

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 11/17

https://gricad-gitlab.univ-grenoble-alpes.fr/tracing-llvm

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

Tracing demo #1: types

We want to cleanup all registers containing data related to cardPin when returning.

unsigned char ! __attribute__((trace(dataflow))) cardPin[4];
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

▶ Traced type constructor “T!”—secretly the identity
▶ Here we trace the downstream dataflow of cardPin

What does this do?
▶ Taint expressions that depend on cardPin in the front-end
▶ Prevent the compiler from rewriting the computations
▶ Trace them until Machine IR, where we can cleanup all relevant registers

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 12/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

Tracing demo #1: types

We want to cleanup all registers containing data related to cardPin when returning.

unsigned char ! __attribute__((trace(dataflow))) cardPin[4];
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

▶ Traced type constructor “T!”—secretly the identity
▶ Here we trace the downstream dataflow of cardPin

What does this do?
▶ Taint expressions that depend on cardPin in the front-end
▶ Prevent the compiler from rewriting the computations
▶ Trace them until Machine IR, where we can cleanup all relevant registers

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 12/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

Tracing demo #1: types

We want to cleanup all registers containing data related to cardPin when returning.

unsigned char ! __attribute__((trace(dataflow))) cardPin[4];
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

▶ Traced type constructor “T!”—secretly the identity
▶ Here we trace the downstream dataflow of cardPin

What does this do?
▶ Taint expressions that depend on cardPin in the front-end
▶ Prevent the compiler from rewriting the computations
▶ Trace them until Machine IR, where we can cleanup all relevant registers

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 12/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

Tracing demo #2: wrappers

We want to use hardened booleans (0x55/0xaa) and not have them optimized away.

int ! __attribute__((trace(writes))) valid = 0x55;
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

▶ Traces writes to valid, requiring that they occur exactly as written in source
▶ Compiler can’t change the values even if it recognizes a boolean

LLVM IR

simplewrapper void 1 2 closed
store i32 85, ptr %valid ; hidden

RISC-V Assembler

; unoptimized
li a0, 0x55

▶ ... optimizations can’t touch wrappers because it would be incorrect functionally
▶ As a bonus, guaranteed to use the same register for all writes

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 13/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

Tracing demo #2: wrappers

We want to use hardened booleans (0x55/0xaa) and not have them optimized away.

int ! __attribute__((trace(writes))) valid = 0x55;
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

▶ Traces writes to valid, requiring that they occur exactly as written in source
▶ Compiler can’t change the values even if it recognizes a boolean

LLVM IR

simplewrapper void 1 2 closed
store i32 85, ptr %valid ; hidden

RISC-V Assembler

; unoptimized
li a0, 0x55

▶ ... optimizations can’t touch wrappers because it would be incorrect functionally
▶ As a bonus, guaranteed to use the same register for all writes

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 13/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

Getting strong countermeasures from tracing

I use Tracing LLVM to build a secure verifyPIN function with:
▶ Basic data-flow integrity (double loads)

→ Source

▶ Basic control-flow integrity (Step Counter Incrementation)

→ Source

▶ All sensitive data allocated in registers

→ Assembly

▶ Sensitive registers zeroed at exit of function

→ Assembly

Can have both source annotations and precise assembly code!

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 14/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

Getting strong countermeasures from tracing

I use Tracing LLVM to build a secure verifyPIN function with:
▶ Basic data-flow integrity (double loads) → Source
▶ Basic control-flow integrity (Step Counter Incrementation) → Source
▶ All sensitive data allocated in registers → Assembly
▶ Sensitive registers zeroed at exit of function → Assembly

Can have both source annotations and precise assembly code!

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 14/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

Other features of interest (WIP)

Control lowerings:
▶ Preserve accesses (like volatile but with register promotion)
▶ Lower C variable to single unique register (all live ranges)

Trace source code to target code:
▶ Erase sensitive registers after function
▶ Guaranteed correct debug information (up to some optimizations lost)

Countermeasure API:
▶ “What SSA values are myvar right now?”
▶ “Which two assembly xor do my mask refresh?”

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 15/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

It’s like a parallel compilation!

Security propertiesProgram hardening

C source code

LLVM IR

SelectionDAG

Machine IR
Object code

Libraries Runtime

Executable code

Security annotations

Hardening pass P1

Hardening pass P2

Done

Lower annotations

Keep structure set by P1

Keep structure set by P2

Well-annotated

“P1 applied” (structure)

“P1 + P2 applied” (structure)

Resists attack

Lowered annot. match source

Variant of “P1 applied”
on lowered syntax

Variant of “countermeasure
applied” on lowered syntax

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 16/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

It’s like a parallel compilation!

Security propertiesProgram hardening

C source code

LLVM IR

SelectionDAG

Machine IR
Object code

Libraries Runtime

Executable code

Security annotations

Hardening pass P1

Hardening pass P2

Done

Lower annotations

Keep structure set by P1

Keep structure set by P2

Well-annotated

“P1 applied” (structure)

“P1 + P2 applied” (structure)

Resists attack

Lowered annot. match source

Variant of “P1 applied”
on lowered syntax

Variant of “countermeasure
applied” on lowered syntax

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 16/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

It’s like a parallel compilation!

Security propertiesProgram hardening

C source code

LLVM IR

SelectionDAG

Machine IR
Object code

Libraries Runtime

Executable code

Security annotations

Hardening pass P1

Hardening pass P2

Done

Lower annotations

Keep structure set by P1

Keep structure set by P2

Well-annotated

“P1 applied” (structure)

“P1 + P2 applied” (structure)

Resists attack

Lowered annot. match source

Variant of “P1 applied”
on lowered syntax

Variant of “countermeasure
applied” on lowered syntax

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 16/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

It’s like a parallel compilation!

Security propertiesProgram hardening

C source code

LLVM IR

SelectionDAG

Machine IR
Object code

Libraries Runtime

Executable code

Security annotations

Hardening pass P1

Hardening pass P2

Done

Lower annotations

Keep structure set by P1

Keep structure set by P2

Well-annotated

“P1 applied” (structure)

“P1 + P2 applied” (structure)

Resists attack

Lowered annot. match source

Variant of “P1 applied”
on lowered syntax

Variant of “countermeasure
applied” on lowered syntax

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 16/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

It’s like a parallel compilation!

Security propertiesProgram hardening

C source code

LLVM IR

SelectionDAG

Machine IR
Object code

Libraries Runtime

Executable code

Security annotations

Hardening pass P1

Hardening pass P2

Done

Lower annotations

Keep structure set by P1

Keep structure set by P2

Well-annotated

“P1 applied” (structure)

“P1 + P2 applied” (structure)

Resists attack

Lowered annot. match source

Variant of “P1 applied”
on lowered syntax

Variant of “countermeasure
applied” on lowered syntax

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 16/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

It’s like a parallel compilation!

Security propertiesProgram hardening

C source code

LLVM IR

SelectionDAG

Machine IR
Object code

Libraries Runtime

Executable code

Security annotations

Hardening pass P1

Hardening pass P2

Done

Lower annotations

Keep structure set by P1

Keep structure set by P2

Well-annotated

“P1 applied” (structure)

“P1 + P2 applied” (structure)

Resists attack

Lowered annot. match source

Variant of “P1 applied”
on lowered syntax

Variant of “countermeasure
applied” on lowered syntax

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 16/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

It’s like a parallel compilation!

Security propertiesProgram hardening

C source code

LLVM IR

SelectionDAG

Machine IR
Object code

Libraries Runtime

Executable code

Security annotations

Hardening pass P1

Hardening pass P2

Done

Lower annotations

Keep structure set by P1

Keep structure set by P2

Well-annotated

“P1 applied” (structure)

“P1 + P2 applied” (structure)

Resists attack

Lowered annot. match source

Variant of “P1 applied”
on lowered syntax

Variant of “countermeasure
applied” on lowered syntax

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 16/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

4

Conclusion

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 16/17

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

Secure compilation:
with the compiler, not against

My contributions
1. Fetch skips countermeasure: software can help with microarch attacks!
2. Tracing LLVM: tools and compilation guarantees for writing countermeasures.

» https://gricad-gitlab.univ-grenoble-alpes.fr/tracing-llvm

Take-away messages!
▶ Use the compiler to connect high-level requirements to low-level secure code
▶ Position: we should also do that with SW/HW co-design!

Questions?

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 17/17

https://gricad-gitlab.univ-grenoble-alpes.fr/tracing-llvm

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

Secure compilation:
with the compiler, not against

My contributions
1. Fetch skips countermeasure: software can help with microarch attacks!
2. Tracing LLVM: tools and compilation guarantees for writing countermeasures.

» https://gricad-gitlab.univ-grenoble-alpes.fr/tracing-llvm

Take-away messages!
▶ Use the compiler to connect high-level requirements to low-level secure code
▶ Position: we should also do that with SW/HW co-design!

Questions?

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 17/17

https://gricad-gitlab.univ-grenoble-alpes.fr/tracing-llvm

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

Secure compilation:
with the compiler, not against

My contributions
1. Fetch skips countermeasure: software can help with microarch attacks!
2. Tracing LLVM: tools and compilation guarantees for writing countermeasures.

» https://gricad-gitlab.univ-grenoble-alpes.fr/tracing-llvm

Take-away messages!
▶ Use the compiler to connect high-level requirements to low-level secure code
▶ Position: we should also do that with SW/HW co-design!

Questions?

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 17/17

https://gricad-gitlab.univ-grenoble-alpes.fr/tracing-llvm

Fault injection attacks Use lowest-level models possible Semantics and secure compilation Conclusion

Secure compilation:
with the compiler, not against

My contributions
1. Fetch skips countermeasure: software can help with microarch attacks!
2. Tracing LLVM: tools and compilation guarantees for writing countermeasures.

» https://gricad-gitlab.univ-grenoble-alpes.fr/tracing-llvm

Take-away messages!
▶ Use the compiler to connect high-level requirements to low-level secure code
▶ Position: we should also do that with SW/HW co-design!

Questions?

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 17/17

https://gricad-gitlab.univ-grenoble-alpes.fr/tracing-llvm

References

Related work

▶ Son Tuan Vu’s Ph.D [Vu21] (with Karine Heydemann)
much of the same pitch, but only preserves passive observations—within the semantics

▶ The Correctness-Security Gap in Compiler Optimization [DPS15] (2015);
What You Get is What You C [SCA18] (2018)
earlier dives into the fundamental challenges in secure compilation

▶ CompaSeC [Gei+23] (a combined control- and data-flow protection)
showcases how hard it is to compose countermeasures, thus the need to prove

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 18/17

References

References I

[Als+22] Ihab Alshaer et al. “Variable-Length Instruction Set: Feature or Bug?” In: 2022 25th
Euromicro Conference on Digital System Design (DSD). Maspalomas, Spain. IEEE, 2022.
isbn: 978-1-6654-7405-4. doi: 10.1109/DSD57027.2022.00068.

[DPS15] Vijay D’Silva, Mathias Payer, and Dawn Song. “The Correctness-Security Gap in Compiler
Optimization”. In: 2015 IEEE Security and Privacy Workshops. 2015, pp. 73–87. doi:
10.1109/SPW.2015.33.

[Gei+23] Johannes Geier et al. “CompaSeC: A Compiler-Assisted Security Countermeasure to Address
Instruction Skip Fault Attacks on RISC-V”. In: Proceedings of the 28th Asia and South
Pacific Design Automation Conference. ASPDAC ’23. Tokyo, Japan: Association for
Computing Machinery, Jan. 2023, pp. 676–682. isbn: 9781450397834. doi:
10.1145/3566097.3567925. url: https://doi.org/10.1145/3566097.3567925.

[Lau20] Johan Laurent. “Modélisation de fautes utilisant la description RTL de microarchitectures
pour l’analyse de vulnérabilité conjointe matérielle-logicielle”. Theses. Université Grenoble
Alpes, Nov. 2020. url: https://tel.archives-ouvertes.fr/tel-03167493.

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 19/17

https://doi.org/10.1109/DSD57027.2022.00068
https://doi.org/10.1109/SPW.2015.33
https://doi.org/10.1145/3566097.3567925
https://doi.org/10.1145/3566097.3567925
https://tel.archives-ouvertes.fr/tel-03167493

References

References II

[MDG24] Sébastien Michelland, Christophe Deleuze, and Laure Gonnord. “From low-level fault
modeling (of a pipeline attack) to a proven hardening scheme”. In: Compiler Construction
(CC’24). Edinburgh (Scotland), United Kingdom, Mar. 2024. doi:
10.1145/3640537.3641570. url: https://hal.science/hal-04438994.

[SCA18] Laurent Simon, David Chisnall, and Ross Anderson. “What You Get is What You C:
Controlling Side Effects in Mainstream C Compilers”. In: 2018 IEEE European Symposium
on Security and Privacy (EuroS&P). 2018, pp. 1–15. doi: 10.1109/EuroSP.2018.00009.

[Sol+21] Hadi Soleimany et al. “Practical multiple persistent faults analysis”. In: Cryptology ePrint
Archive (2021).

[Vu21] Son Tuan Vu. “Optimizing Property-Preserving Compilation”. Thèse de doctorat dirigée par
Heydemann, Karine et Cohen, Albert Henri Informatique Sorbonne université 2021.
PhD thesis. Sorbonne Université, 2021. url: http://www.theses.fr/2021SORUS435.

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 20/17

https://doi.org/10.1145/3640537.3641570
https://hal.science/hal-04438994
https://doi.org/10.1109/EuroSP.2018.00009
http://www.theses.fr/2021SORUS435

References

Fetch skips hardening: validation

MiBench benchmarks
1. Exhaustive skip
2. Exhaustive double-skip
3. Exhaustive skip-and-repeat
R. 2000 random multi-faults

Attack succeeded (0)
Attack detected (∼75%)
Segfault
Other crash

▶ 9 programs, 32’000 attacks reached, 0 bypass (0 checksum collision)
▶ Cost: ∼10% time, average x2.46 space (similar work: x5 time and space)

These are very good because of the software/hardware combo!

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 21/17

References

Fetch skips hardening implementation

▶ Fetch Skips Hardening is presented as an assembly transform, but...

clang

C source code

LLVM

LLVM IR

SelectionDAG

Machine IR
Object code

Libraries Runtime
GNU ld

Executable code

MachineFunctionPass: adds orange/red blocks

Static relaxation: code size bounded
Emitter: Late jump expansion + relocation emission

Relocation: Checksum computation + some fixing

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 22/17

References

Model of multi-pass hardening

Security propertiesHardening process
Programmer

C source code

Compiler

LLVM IR

SelectionDAG

Machine IR
Object code

Libraries Runtime

Linker

Executable code

Security annotation

Start hardening

Continue hardening

Finish hardening

Lower annotations

Lower annotations,
preserve security

Lower annotations,
preserve security

satisfies
S1

“well-annotated”

satisfies
S2

satisfies
S3

...

satisfies
SN

“resists attack”

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 23/17

References

Security properties of fetch skips hardening

Psrc P1 P2 P3 P4 P5 Pexe

True True Blocks have
exit widgets
(MachineIR)

True Blocks have
exit widgets
(MachineIR)

Exit widgets
(relocations)

Exit widgets
(checksums)

After fetch skip,
stops before end of block

Front-end
Middle-end FSH

provable

Relaxation

???

FSH-verif

recovers

Emitter Linker

sa
ti
sfi

es

sa
ti
sfi

es

sa
ti
sfi

es

sa
ti
sfi

es

sa
ti
sfi

es

sa
ti
sfi

es

sa
ti
sfi

es

implies

▶ Almost never talks about fetch skips.

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 24/17

References

... leading to some of the most robust guarantees

▶ To reason about the attack, extend the semantics of assembler!
▶ Describe how fetches work to clear the abstraction gap

▶ Fetch rules (right): describe fetches + attacks
▶ Step rules (not shown): decoding/execution

Proven security guarantee

If you fetch skip, the program will stop/crash before
the end of the current block.
Multi-fault attacks too (unless checksum collision—
usually impossible).

NOFAULT

(PC, ρ) a ⇒ [a] (PC, [a])

S32(k) 1 < k ≤ N

(PC, ρ) a ⇒ [a+ 4k] (PC + 4k, [a+ 4k])

S&R32 ρ ̸= [a]

(PC, ρ) a ⇒ ρ (PC, [a])

Journées Nationales du GRD Sécurité 2025 (Caen, 2025-06-24) Secure compilation—with the compiler, not against: first experiments on ’Tracing LLVM’ 25/17

	Dealing with fault injection attacks
	Use lowest-level models possible
	Semantics and secure compilation
	Conclusion
	Appendix
	References

