Verified compilation: towards zero-defect software

Sandrine Blazy
S arome & IRISA @ Lreia-

GDR Securité Informatique, Caen, 2025-06-23

Formal verification of software: tool-assisted technigues

model checking
deductive verification

tatic analysis

AUTOMATIC INTERACTIVE

Deductive verification

SOFTWARE

CORRECT

in thesense of

PROOIj
—

ith

conducted}

MATHEMATICAL
RIGOUR

SPECIFICATION

=

Sriday, 2Lth June, .

-

Checking a large routine. by Dr, A, Turing.

How can one check a routine in the sense of making sure that it is right?

In order that the man wiwo checks may not have too difficult a task the

| | |
FrOrr] early Intu ItIOnS . programaer should mske a number of definite assertions which cun be checked
individually, and from which the correctness of the whole programae casily

follows,

Conaider tho analogy of checking an addition. If it ias given as:

A. M. Turing.

Checking a large routine.1949.

—STOP

TESTr —nr——

1374
5906
6719
L337
7768

26104

ono_muat check the whole at cne aitting, because of the carrices,

u<+1
forr=0ton—1do
v =ut+v—s=s5+1 veu
for s=1 to r do
u<— u-+yv

r'=r414H

[EST s —r

... to deductive-verification and automated tools

Floyd 1967, Hoare 1969

SOFTWARE

written}in in thejsense of inclubing

LANGUAGE) PROOF/L
" ; ~enferces

~ fonducted with

definedjby

PROOF |/ SOFTWARE o
SEMANTICS) CERTIFC ATQ oo) INVARIANTS

£ither or

MATHEMATICAL
RIGOUR)
AUTOMAT

59 INTERACTI\@
N S—

INTERPRETE?) -

N—

Another historical example

Boyer-Moore’s majority. 1980

Given N votes, determine the majority if any

A

A

A|C|C (B (B

C

C

C

B

C

C

1

majority = A
delta = 3

MJRTY—A Fast Majority
Vote Algorithm'

Robert S. Boyer and J Strother Moore

Computer Sciences Department
University of Texas at Austin
and
Computational Logic, Inc.

1717 West Sixth Street, Suite 290
Austin, Texas

Abstract

A new algorithm is presented for determining which, if any, of an arbitrary
number of candidates has received a majority of the votes cast in an election.
The number of comparisons required is at most twice the number of votes.
Furthermore, the algorithm uses storage in a way that permits an efficient
use of magnetic tape. A Fortran version of the algorithm is exhibited. The
Fortran code has been proved correct by a mechanical verification system for
Fortran. The system and the proof are discussed.

Another historical example

Boyer-Moore’s majority. 1980

Given N votes, determine the majority if any
AlAlAlcic|B[Bc|c(c[B[C|C]

1

majority = A
delta =3

T

A XK|X|ele]B|B|c|c|c|BC|C]

i

majority = A
delta = 1

T — T ——

MJRTY—A Fast Majority
Vote Algorithm’

Robert S. Boyer and J Strother Moore

Computer Sciences Department
University of Texas at Austin
and
Computational Logic, Inc.
1717 West Sixth Street, Suite 290
Austin, Texas

Abstract

A new algorithm is presented for determining which, if any, of an arbitrary
number of candidates has received a majority of the votes cast in an election.
The number of comparisons required is at most twice the number of votes.
Furthermore, the algorithm uses storage in a way that permits an efficient
use of magnetic tape. A Fortran version of the algorithm is exhibited. The
Fortran code has been proved correct by a mechanical verification system for
Fortran. The system and the proof are discussed.

Part 1. summary

SOFTWARE) CORRECT) SPECIFICATION
— N—
writtenfin VERIFIED) in thei sense of inCIu"ing
COMPILER) '
IMP and C INTERACTIVE
LANGUAGE PROOF |
. enferces
definedjby conducted with |

Rocq PROOF
ASSISTANT INVARIANTS

(formerly Coq)|

SEMANTICS

INTERPRETEFQ

—

SOFTWARE) CORRECT) SPECIFICATION
N—

written | ';

IMP and C
LANGUAGE
SEMANTICS

INTERPRETEv
S—

INTERACTIVE
PROOF]
ﬁ
conducted with

b
% . 3
T A
XA

Rocq PROOF
ASSISTANT

Part 2
Early Intuitions

enforces

INVARIANTS

Verified compilation

Compilers are complicated programs, but have a rather simple end-to-end
specification:

The generated code must behave as prescribed
by the semantics of the source program.

T ————————

This specification becomes mathematically precise as soon as we have formal
semantics for the source language and the machine language.

Then, a formal verification of a compiler can be considered.

10

An old Idea ...

John McCarthy
James Painter’

CORRECTNESS OF A COMPILER
FOR ARITHMETIC EXPRESSIONS’

1. Introduction. This paper contains a proof of the correctness of a simple
compiling algorithm for compiling arithmetic expressions into machine
language.

The definition of correctness, the formalism used to express the descrip-
tion of source language, object language and compiler, and the methods
of proof are all intended to serve as prototypes for the more complicated
task of proving the correctness of usable compilers. The ultimate goal,
as outlined in references [1], {2], (3] and [4] is to make it possible to use
a computer to check proofs that compilers are correct.

Mathematical Aspects of Computer Science, 1967

3

Proving Compiler Correctness
In a Mechanized Logic

R. Milﬁer and R. Weyhrauch

Computer Science Department
Stanford University

Abstract :

We discuss the task of machine-checking the proof of a simple compiling
algorithm. The proof-checking program is LCF, an implementation of a logic
for computable functions due to Dana Scott, in which the abstract syntax
and extensional semantics of programming languages can be naturally
expressed. The source language in our example is a simple ArLGoL-like
language with assignments, conditionals, whiles and compound statements.
The target language is an assembly language for a machine with a pushdown
store. Algebraic methods are used to give structure to the proof, which is
presented enly in outline. However, we present in full the expression-compiling
part of the algorithm. More than half of the complete proof has been machine
checked, and we anticipate no difficulty with the remainder. We discuss our
experience in conducting the proof, which indicates that a large part of it
may be automated to reduce the human contribution.

Machine Intelligence (7), 1972

11

Now taught as an exercise to Masters students

(Mechanized semantics: when machines reason about their languages, X.Leroy)

(Software foundations, B.Pierce et al.)

type state = string - int

? ——

eval (s:state)(a:exp): int

1 —

—*

compile (a:exp):

semantics
(eval, exec)

Y

instr list

?—

*

compiler
(compile)

exec(s:state) (stack: int list)(pgm: instr list): int list

00—

:

T~~~

A

3

12

Proving a property with the Rocq software

ACM SIGPLAN Programming Languages Software award 2013
ACM Software System award 2013

https://rocqg-prover.org/

Theorem toy-compiler-correct: semantics
forall s a, | (eval, exec)
exec s [] (compile a) = [eval s a]. |

compiller
(compile)

_J

13

https://rocq-prover.org/

Proving a property with the Rocq software
ACM SIGPLAN Programming Languages Software award 2013

ACM Software System award 2013 https://rocqg-prover.org/
Theorem toy-compiler-correct: semantics compiler
forall s a, (eval, exec) (compile)
exec s [] (compile a) = [eval s a]. y Py
Proof.
intros; oroof
v (* t sh h * _
e (* not shown here *) quided by Rocq

Extraction compile.

\ uoljoeIXe

compiler.ml |

no e

OCaml

14

https://rocq-prover.org/

optimizations

memory model
Part 3 1ntermedlate language ..
How to turn CompCert | Verlf ledéalﬁbllé?%ﬁgﬁstep
from a prototype in a lab abstract syntax - observable events
_ formal semantics

iINto a real-world compiler?
P dataf low solver

A selection of formally verified compilers

CompCert C compiler (Rocq) [Leroy, POPL'06]

CakeML ML bootsrapped compiler (HOL)
[Kumar, Myreen, Norrish, Owens, POPL’ 14]

CertiCoq Gallina compiler (Rocq) [Appel et al., CogPL’17]

Jasmin language and compiler for cryptographic implementations (Rocq)
[Almeida et.al, CCS’17]

16

The CompCert formally verified compiler
(X.Leroy, S.Blazy et al. + Absint Gmbh) https://compcert.org

A moderately optimizing C compiler

Targets several architectures (PowerPC, ARM, RISC-V and x86)

Used in commercial settings (for emergency power generators and flight
control navigation algorithms) and for software certification

Improved performances of the generated code while providing proven
traceability information

ACM Software System award 2021
ACM SIGPLAN Programming Languages Software award 2022

17

CompCert compiler: 10 languages, 18 passes

no side-effect type elimination .
CompCertC — Y C#minor
determinization
Optimizations: constant prop., CSE, tail calls, non @able scalar local var stack bllocation
(LCM), (software pipelining) are pulled out of memory of «&variables
CFG construction iInstruction |
expr. decomp. . | .
P P CminorSel J<M— Cminor J
register
allocation (IRC)
linearisation la’l[yOLlithf ~
L TL l of the CFG Linear Stack frames | Mach J

branch tunnellng() ASM code

generation

18

CompCert compiler: 10 languages, 18 passes

Small-step operational semantics

S5 S
SSES L SotS A
\—\’-_J

termination - /7divergence

execLPDb Behaviors

. ————

abnormal termination L

(a.k.a. going wrong) /O event

C#minor

CompCertC

RTL

Mach

e call to an external function (e.g. printf)

Clight

CminorSel

LTL

Cminor

Linear

ASM

e memory accesses to global volatile variables (hardware devices)

19

Proving semantics preservation:
the simulation approach

semantics compiller
(execSource, execTarget)

J _J

Preserved behaviors = termination and divergence

Thsogefg gompller—COrreCtz « The generated code must
[4

behave as prescribed by the
semantics of the source
program. »

compiler S = OK C =
execSource S b -
execTarget C b.

lesting the specification:
CompCert C reference interpreter

o | .reference outcome
Interpreter

Compcert CJ

Outcome;

» normal termination or aborting on an undefined behavior

« observable effects (I/O events: printf, volatile memory accesses)

Faithful to the semantics of CompCert C
The interpreter displays all the behaviors according to the semantics.

21

Using the reference interpreter
A first example

int f£(int n) {

int x = 1;
for (int 1 = 1; 1 < n; 1++)
1f (x < 9) x = x + 2;
else 1f (x > 50) x = x + 1;
else x = 2 * Xx;
return x; }

int main(void) {
int res = £(12);
printf("Result is %d \n",res);

reference interpreter |
return 0; } ‘/////////

Result 1s 76
Time 387: observable event: extcall printf(& stringlit 1, 76)

Tiue 392: program terminated (exit code = 0)

Using the reference interpreter
A second example

int main(void)

{ int x[2] = { 12, 34 };
printf("x[2] = %d\n", x[2]);
return 0; }

reference interpreter/

- S

Stuck state: in function main, expression
<printf>(<ptr stringlit 1>, <loc x+8>)

Stuck subexpression: <loc x+8>

ERROR: Undefined behavior

Proving semantics preservation:

the simulation approach

source S
State
i

U

U

U

Theorem compiller-correct: S2
V S C b,
compiler S = OK C =
execSource S b - t2
execTarget C b.
Sn—‘l
Tn-1
Sn

U

target
state

24

Proving semantics preservation:
the simulation approach

source S1 - Cr== target S h C
state state
4 4 >
/(‘
-+ or
So Co S’ with 0 < m(S’) < m(S)

U

If the source program diverges, it must perform infinitely many non-stuttering
steps, so the compiled code executes infinitely many steps.

Ingredients

* Induction on the execution relation

e Invariant &~ between source and target states

* measure m from source states to a well-founded set

25

Semantic reasoning for compiler correctness:
summary

Is proved by

correctness g is_ ..
theorem - semantics

_emit

traces |

continuations |:”;

reasoning Jmememm——

simulation
diagrams

" peusyibuens

anti-stuttering
measure

26

Turning CompCert into a secure compiler
CT-CompCert [Barthe, Blazy, Grégoire, Hutin, Laporte, Pichardie, Trieu, POPL'20]

Cryptographic constant-time (CCT) programming discipline

unsigned nok-function (unsigned x, unsigned y, bool secret)
{ 1f (secret) return y; else return x; }

unsigned ok-function (unsigned X, unsigned y, bool secret)
{ return x © ((y ©~ X) & (-(unsigned)secret)); }

How to turn CompCert into a formally-verified secure compiler?

Theorem compiller-correct: Theorem compiller-preserves-CCT:
V S C b, V s C,
compiler S = OK C - compiler S = OK C -
execCompCertC S b - 1sCCT S -
execASM C b. 1sCCT C.

B 2 executions of S from 2
indistinguishable states (only share
public values)

observe
program leakages (boolean guards
and memory accesses) -

optimizations

memory model
| intermediate language .
CO NC | LUSION register allocation o control flow gr aph " continuations
verified compiler
observable events

state and error monad _ abetpgct syntax ’
- formal semantics
induction dataﬂow Solver

simulations proof

CompCert, an open infrastructure for research

front-ends

ProbCompCert

(Boston College)j

Velus

Opens the way to the trust of other development tools

CompCertO
(Yale)

(Inria)

CertiRocq
(Inria, Princeton)

J

Capla
(Inria) ;

CT-CompCert

\ CompCertC |

FM JIT

+—>

Gillian-C

(ICL)

Verifast
(KUL)

J

VST separation logic

(Princeton)

back-end

CompCert

front-end

ASM

Verasco abstract

A

v

Interpreter
back-ends
CompCert
GSA
~ Chamois
Vericert (UGA)
(ICL)

29

In closing

Mechanized semantics are the shared basis for verified compilers, sound
program logics, and sound static analyzers

Future directions
Connection w.r.t. hardware verification @

More formal guarantees for software written in recent languages

30

ioNns”?

Quest

Thank you

31

