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Formal verification of software: tool-assisted techniques
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Deductive verification 
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From early intuitions …

A. M. Turing.  
Checking a large routine.1949.
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… to deductive-verification and automated tools 
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Another historical example

Boyer-Moore’s majority. 1980


Given N votes, determine the majority if any
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Another historical example

Boyer-Moore’s majority. 1980


Given N votes, determine the majority if any
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delta = 3

A A A C C B B C C C B C C

A A A C C B B C C C B C C

majority = A

delta = 1



Part 1: summary
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Part 2  
Early intuitions
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Verified compilation

Compilers are complicated programs, but have a rather simple end-to-end 
specification: 


This specification becomes mathematically precise as soon as we have formal 
semantics for the source language and the machine language. 


Then, a formal verification of a compiler can be considered.
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The generated code must behave as prescribed 
by the semantics of the source program. 



An old idea …

Mathematical Aspects of Computer Science, 1967
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Machine Intelligence (7), 1972



Now taught as an exercise to Masters students 
(Mechanized semantics: when machines reason about their languages, X.Leroy)  
(Software foundations, B.Pierce et al.)
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type state = string → int

exec(s:state)(stack: int list)(pgm: instr list): int list

eval (s:state)(a:exp): int  

3
6 9

IPlus
n

Push n
4

Load x

s(x)=4

compile (a:exp): instr list 

com
pilation

semantics 
(eval, exec)

compiler 
(compile)



Proving a property with the Rocq software 
ACM SIGPLAN Programming Languages Software award 2013 
ACM Software System award 2013                                       https://rocq-prover.org/
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Theorem toy-compiler-correct: 
  forall s a, 
  exec s [] (compile a) = [eval s a].

semantics 
(eval, exec)

compiler 
(compile)

https://rocq-prover.org/


Proving a property with the Rocq software 
ACM SIGPLAN Programming Languages Software award 2013 
ACM Software System award 2013                                       https://rocq-prover.org/
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Theorem toy-compiler-correct: 
  forall s a, 
  exec s [] (compile a) = [eval s a].
Proof.
  intros; 
  … (* not shown here *)
Qed.

semantics 
(eval, exec)

compiler 
(compile)

extraction

Extraction compile.

proof  
guided by Rocq

compiler.ml

https://rocq-prover.org/


Part 3 
How to turn CompCert  
from a prototype in a lab  
into a real-world compiler?



A selection of formally verified compilers

CompCert C compiler (Rocq) [Leroy, POPL’06]


CakeML ML bootsrapped compiler (HOL)  
               [Kumar, Myreen, Norrish, Owens, POPL’14]


CertiCoq Gallina compiler (Rocq) [Appel et al., CoqPL’17]


Jasmin language and compiler for cryptographic implementations (Rocq)  
             [Almeida et.al, CCS’17]
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The CompCert formally verified compiler 
(X.Leroy, S.Blazy et al. + AbsInt Gmbh)                                   https://compcert.org

A moderately optimizing C compiler


Targets several architectures (PowerPC, ARM, RISC-V and x86)


Used in commercial settings (for emergency power generators and flight 
control navigation algorithms) and for software certification


Improved performances of the generated code while providing proven 
traceability information


ACM Software System award 2021 
ACM SIGPLAN Programming Languages Software award 2022

17



CompCert compiler: 10 languages, 18 passes

C#minor

CminorCminorSel

type elimination


stack allocation

of «&»variables

instruction

selection

register

allocation (IRC)

CFG construction

expr. decomp.

Optimizations: constant prop., CSE, tail calls, 
(LCM), (software pipelining) 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no side-effect

determinization


CompCertC

LTL

branch tunneling

non @able scalar local var 
are pulled out of memory

Linear Mach
linearisation
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layout of

stack frames

ASM code

generation

ASM

RTL

Clight



CompCert compiler: 10 languages, 18 passes

C#minor

CminorCminorSelRTL

Linear

ASM
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ClightCompCertC

LTL

S t S′ 

S t * S′ S t + S′ S t ∞

Behaviors

termination divergence

Small-step operational semantics

Mach

I/O event


• call to an external function (e.g. printf)


• memory accesses to global volatile variables (hardware devices)

abnormal termination  
(a.k.a. going wrong)

execL P b



Proving semantics preservation:  
the simulation approach

Preserved behaviors = termination and divergence 

20

Theorem compiler-correct: 
  ∀ S C b, 
  compiler S = OK C →  
  execSource S b →  
  execTarget C b.

« The generated code must 
behave as prescribed by the 

semantics of the source 
program. »

semantics  
(execSource, execTarget)

compiler 
 



Testing the specification: 
CompCert C reference interpreter

Outcome:

• normal termination or aborting on an undefined behavior


• observable effects (I/O events: printf, volatile memory accesses)


Faithful to the semantics of CompCert C 
The interpreter displays all the behaviors according to the semantics.

reference 
interpreter.c outcome

Compcert C
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Using the reference interpreter 
A first example

reference interpreter

Result is 76 
Time 387: observable event: extcall printf(& __stringlit_1, 76) 
Time 392: program terminated (exit code = 0)

int f(int n) {
 int x = 1;
 for (int i = 1; i < n; i++)
    if (x < 9) x = x + 2;
    else if (x > 50) x = x + 1;
    else x = 2 * x;
    return x;  }

int main(void) {
    int res = f(12);
    printf("Result is %d \n",res);
    return 0; }

number 
of execution 

steps



Using the reference interpreter 
A second example

int main(void)
{  int x[2] = { 12, 34 };
  printf("x[2] = %d\n", x[2]);
  return 0;  }

reference interpreter
The interpreter stops on this undefined behavior.  

This is not the case for the compiled code.

Stuck state: in function main, expression
  <printf>(<ptr __stringlit_1>, <loc x+8>)
Stuck subexpression: <loc x+8>
ERROR: Undefined behavior



Proving semantics preservation:  
the simulation approach
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target 
state

source 
state

Theorem compiler-correct: 
  ∀ S C b, 
  compiler S = OK C →  
  execSource S b →  
  execTarget C b.

S1
≈ C1

C2≈S2

+
t1t1
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Proving semantics preservation:  
the simulation approach
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with 0 ≤ m(S’) < m(S)

or

Ingredients

• induction on the execution relation


• invariant  between source and target states


•measure m from source states to a well-founded set

≈

target 
state

source 
state

If the source program diverges, it must perform infinitely many non-stuttering 
steps, so the compiled code executes infinitely many steps.

S1
≈ C1

C2≈S2

+
t1t1

S ≈ C

S’

≈
ε



Semantic reasoning for compiler correctness: 
summary
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Turning CompCert into a secure compiler  
CT-CompCert     [Barthe, Blazy, Grégoire, Hutin, Laporte, Pichardie, Trieu, POPL’20]

Cryptographic constant-time (CCT) programming discipline
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unsigned nok-function (unsigned x, unsigned y, bool secret)
{ if (secret) return y; else return x; }

unsigned ok-function (unsigned x, unsigned y, bool secret)
{ return x ^ ((y ^ x) & (-(unsigned)secret)); }

Theorem compiler-preserves-CCT: 
  ∀ S C, 
  compiler S = OK C →  
  isCCT S → 
  isCCT C.

Theorem compiler-correct: 
  ∀ S C b, 
  compiler S = OK C →  
  execCompCertC S b →  
  execASM C b.

How to turn CompCert into a formally-verified secure compiler?

observe 
program leakages (boolean guards 

and memory accesses)

2 executions of S from 2 
indistinguishable states (only share 

public values)



Conclusion



CompCert, an open infrastructure for research 
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Verasco abstract 
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Opens the way to the trust of other development tools

Capla

(Inria)

FM JIT



In closing

Mechanized semantics are the shared basis for verified compilers, sound 
program logics, and sound static analyzers


Future directions


Connection w.r.t. hardware verification 


More formal guarantees for software written in recent languages 
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Thank you!                                                 Questions?
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