
Verified compilation: towards zero-defect software

Sandrine Blazy

GDR Sécurité Informatique, Caen, 2025-06-23

Formal verification of software: tool-assisted techniques

de
du

ct
iv

e
ve

rifi
ca

tio
n

2

AUTOMATIC INTERACTIVE

m
od

el
 c

he
ck

in
g

st
at

ic
 a

na
ly

si
s

Deductive verification

3

SPECIFICATIONSOFTWARE CORRECT

LOGIC

in

PROOF

in the sense of

MATHEMATICAL
RIGOUR

conducted with

From early intuitions …

A. M. Turing.  
Checking a large routine.1949.

4

… to deductive-verification and automated tools

5

SPECIFICATIONSOFTWARE CORRECT

LANGUAGE

SEMANTICS

PROOF LOGIC

INVARIANTS

INTERPRETER

SOFTWARE
TOOL

MATHEMATICAL
RIGOUR

AUTOMATED INTERACTIVE

PROOF
CERTIFICATE

written in

defined by

e.g.

in the sense ofVERIFIED
SOFTWARE

inincluding

produces
conducted with

either or

enforces

Floyd 1967, Hoare 1969

Another historical example

Boyer-Moore’s majority. 1980

Given N votes, determine the majority if any

6

majority = A

delta = 3

A A A C C B B C C C B C C

Another historical example

Boyer-Moore’s majority. 1980

Given N votes, determine the majority if any

7

majority = A

delta = 3

A A A C C B B C C C B C C

A A A C C B B C C C B C C

majority = A

delta = 1

Part 1: summary

8

SPECIFICATIONSOFTWARE CORRECT

IMP and C
LANGUAGE

SEMANTICS INVARIANTS

INTERPRETER

Rocq PROOF
ASSISTANT

written in

defined by

e.g.

in the sense ofVERIFIED
COMPILER

including

conducted with enforces

INTERACTIVE
PROOF

(formerly Coq)

Part 2
Early intuitions

SPECIFICATIONSOFTWARE CORRECT

IMP and C
LANGUAGE

SEMANTICS INVARIANTS

INTERPRETER

Rocq PROOF
ASSISTANT

written in

defined by

e.g.

in the sense ofVERIFIED
COMPILER

including

conducted with
enforces

INTERACTIVE
PROOF

Verified compilation

Compilers are complicated programs, but have a rather simple end-to-end
specification:

This specification becomes mathematically precise as soon as we have formal
semantics for the source language and the machine language.

Then, a formal verification of a compiler can be considered.

10

The generated code must behave as prescribed
by the semantics of the source program.

An old idea …

Mathematical Aspects of Computer Science, 1967

11

Machine Intelligence (7), 1972

Now taught as an exercise to Masters students
(Mechanized semantics: when machines reason about their languages, X.Leroy)
(Software foundations, B.Pierce et al.)

12

type state = string → int

exec(s:state)(stack: int list)(pgm: instr list): int list

eval (s:state)(a:exp): int

3
6 9

IPlus
n

Push n
4

Load x

s(x)=4

compile (a:exp): instr list

com
pilation

semantics
(eval, exec)

compiler
(compile)

Proving a property with the Rocq software
ACM SIGPLAN Programming Languages Software award 2013
ACM Software System award 2013 https://rocq-prover.org/

13

Theorem toy-compiler-correct:
 forall s a,
 exec s [] (compile a) = [eval s a].

semantics
(eval, exec)

compiler
(compile)

https://rocq-prover.org/

Proving a property with the Rocq software
ACM SIGPLAN Programming Languages Software award 2013
ACM Software System award 2013 https://rocq-prover.org/

14

Theorem toy-compiler-correct:
 forall s a,
 exec s [] (compile a) = [eval s a].
Proof.
 intros;
 … (* not shown here *)
Qed.

semantics
(eval, exec)

compiler
(compile)

extraction

Extraction compile.

proof  
guided by Rocq

compiler.ml

https://rocq-prover.org/

Part 3
How to turn CompCert
from a prototype in a lab
into a real-world compiler?

A selection of formally verified compilers

CompCert C compiler (Rocq) [Leroy, POPL’06]

CakeML ML bootsrapped compiler (HOL)  
 [Kumar, Myreen, Norrish, Owens, POPL’14]

CertiCoq Gallina compiler (Rocq) [Appel et al., CoqPL’17]

Jasmin language and compiler for cryptographic implementations (Rocq)  
 [Almeida et.al, CCS’17]

16

The CompCert formally verified compiler
(X.Leroy, S.Blazy et al. + AbsInt Gmbh) https://compcert.org

A moderately optimizing C compiler

Targets several architectures (PowerPC, ARM, RISC-V and x86)

Used in commercial settings (for emergency power generators and flight
control navigation algorithms) and for software certification

Improved performances of the generated code while providing proven
traceability information

ACM Software System award 2021 
ACM SIGPLAN Programming Languages Software award 2022

17

CompCert compiler: 10 languages, 18 passes

C#minor

CminorCminorSel

type elimination

stack allocation

of «&»variables

instruction

selection

register

allocation (IRC)

CFG construction

expr. decomp.

Optimizations: constant prop., CSE, tail calls,
(LCM), (software pipelining) 

18

no side-effect

determinization

CompCertC

LTL

branch tunneling

non @able scalar local var
are pulled out of memory

Linear Mach
linearisation

of the CFG

layout of

stack frames

ASM code

generation

ASM

RTL

Clight

CompCert compiler: 10 languages, 18 passes

C#minor

CminorCminorSelRTL

Linear

ASM

19

ClightCompCertC

LTL

S t S′

S t * S′ S t + S′ S t ∞

Behaviors

termination divergence

Small-step operational semantics

Mach

I/O event

• call to an external function (e.g. printf)

• memory accesses to global volatile variables (hardware devices)

abnormal termination  
(a.k.a. going wrong)

execL P b

Proving semantics preservation:
the simulation approach

Preserved behaviors = termination and divergence

20

Theorem compiler-correct:
 ∀ S C b,
 compiler S = OK C →  
 execSource S b →  
 execTarget C b.

« The generated code must
behave as prescribed by the

semantics of the source
program. »

semantics  
(execSource, execTarget)

compiler 

Testing the specification:
CompCert C reference interpreter

Outcome:

• normal termination or aborting on an undefined behavior

• observable effects (I/O events: printf, volatile memory accesses)

Faithful to the semantics of CompCert C 
The interpreter displays all the behaviors according to the semantics.

reference
interpreter.c outcome

Compcert C

21

Using the reference interpreter
A first example

reference interpreter

Result is 76
Time 387: observable event: extcall printf(& __stringlit_1, 76)
Time 392: program terminated (exit code = 0)

int f(int n) {
 int x = 1;
 for (int i = 1; i < n; i++)
 if (x < 9) x = x + 2;
 else if (x > 50) x = x + 1;
 else x = 2 * x;
 return x; }

int main(void) {
 int res = f(12);
 printf("Result is %d \n",res);
 return 0; }

number
of execution

steps

Using the reference interpreter
A second example

int main(void)
{ int x[2] = { 12, 34 };
 printf("x[2] = %d\n", x[2]);
 return 0; }

reference interpreter
The interpreter stops on this undefined behavior.

This is not the case for the compiled code.

Stuck state: in function main, expression
 <printf>(<ptr __stringlit_1>, <loc x+8>)
Stuck subexpression: <loc x+8>
ERROR: Undefined behavior

Proving semantics preservation:
the simulation approach

24

target 
state

source 
state

Theorem compiler-correct:
 ∀ S C b,
 compiler S = OK C →  
 execSource S b →  
 execTarget C b.

S1
≈ C1

C2≈S2

+
t1t1

t2t2

≈ Cn-1Sn-1

Cn≈Sn

+
tn-1tn-1

Proving semantics preservation:
the simulation approach

25

with 0 ≤ m(S’) < m(S)

or

Ingredients

• induction on the execution relation

• invariant between source and target states

•measure m from source states to a well-founded set

≈

target 
state

source 
state

If the source program diverges, it must perform infinitely many non-stuttering
steps, so the compiled code executes infinitely many steps.

S1
≈ C1

C2≈S2

+
t1t1

S ≈ C

S’

≈
ε

Semantic reasoning for compiler correctness:
summary

26

correctness
theorem

behaviors

termination divergence

semanticsabout
is

observe traces

belong to

emit

reasoning simulation
diagrams

using

continuations

rel
y o

n

is proved by

fac
ilita

te

anti-stuttering
measure

strengthened
w

ith

Turning CompCert into a secure compiler
CT-CompCert [Barthe, Blazy, Grégoire, Hutin, Laporte, Pichardie, Trieu, POPL’20]

Cryptographic constant-time (CCT) programming discipline

27

unsigned nok-function (unsigned x, unsigned y, bool secret)
{ if (secret) return y; else return x; }

unsigned ok-function (unsigned x, unsigned y, bool secret)
{ return x ^ ((y ^ x) & (-(unsigned)secret)); }

Theorem compiler-preserves-CCT:
 ∀ S C,
 compiler S = OK C →  
 isCCT S →
 isCCT C.

Theorem compiler-correct:
 ∀ S C b,
 compiler S = OK C →  
 execCompCertC S b →  
 execASM C b.

How to turn CompCert into a formally-verified secure compiler?

observe
program leakages (boolean guards

and memory accesses)

2 executions of S from 2
indistinguishable states (only share

public values)

Conclusion

CompCert, an open infrastructure for research

29

CompCertC

ASM

front-end

CompCert

back-end

RTL

VST separation logic

(Princeton)

Gillian-C

(ICL)

Verifast

(KUL)

front-ends

CompCertO

(Yale)

Velus

(Inria)

CertiRocq

(Inria, Princeton)

ProbCompCert

(Boston college)

back-ends

Vericert

(ICL)

Chamois

(UGA)

CompCert
GSACT-CompCert

Verasco abstract
interpreter

Opens the way to the trust of other development tools

Capla

(Inria)

FM JIT

In closing

Mechanized semantics are the shared basis for verified compilers, sound
program logics, and sound static analyzers

Future directions

Connection w.r.t. hardware verification

More formal guarantees for software written in recent languages

30

Thank you! Questions?

31

