THALES

Building a future we can all trust

On the modelling of the @&
processor microarchitectute

Karine HEYDEMANN,
Thales/Sorbonne University
Journées du GDR Sécurité Informatique, 24th

Plan

1. Background on Side-Channel Attacks
2. Masked Implementation Verification

3. Microarchitecture modelling for masked software
verification

THALES

Introduction: Side-Channel Attacks

EM
emission

ke
L] 1] L 12 q
] 1] <
\"/ Nz il
Power
Time)

consumption

Power Consumption of Instructions

The power consumption of a CPU-based device differs with the executed instructions

> Example of a naive fast exponentiation

SquareMult(z, e, N):
let en, ..., e1 be the bits of e
y+1
for i =n down to 1 {
y + Square(y) (S)
y ¢ ModReduce(y, N) (R)
if ¢; = 1 then {
¥ Mult(y, 2) ()
y < ModReduce(y, N) (R)| =
}
return y

1. also used for synchronizing a fault injection

THALES

Power Consumption of Instructions

The power consumption of a CPU-based device differs with the executed instructions
> Example of a naive fast exponentiation

SquareMult(z, e, N):
let en, ..., e1 be the bits of e “ Square
vel Multiply
for i =n down to 1 { o
Y + Square(y) ()
y ¢ ModReduce(y, N) (R)
if ¢; =1 then { : A (618
¥ Mult(y, 2) ()
¢ ModReduce(y, N) (R)| = | | I i |
} 0 I
4 .
return y

1. also used for synchronizing a fault injection

THALES

Power Consumption of Instructions

The power consumption of a CPU-based device differs with the executed instructions
> Example of a naive fast exponentiation

SquareMult(z, e, N):

0 i o o i o o i
let en, ..., e1 be the bits of e - r—’% N — N — N —— Square
yel Multiply
for i =n down to 1 {
Y ¢ Square(y) ()
y < ModReduce(y, N) (R)
if e; =1 then { :
y 4+ Mult(y, z) (M)
y + ModReduce(y, N) (R)| =
}
}
return y

1. also used for synchronizing a fault injection

THALES

Power Consumption of Instructions

The power consumption of a CPU-based device differs with the executed instructions
> Example of a naive fast exponentiation

SquareMult(z, e, N):

let en, ..., e1 be the bits of e - r—’% A r—’% /\ /\ — N —— Square
yel Multiply
for i =n down to 1 {
Y ¢ Square(y) ()
y < ModReduce(y, N) (R)
if ¢; =1 then { !
y 4+ Mult(y, z) (M)
y + ModReduce(y, N) (R)| =
}
+ .
return y

> Typical exploitation example: Simple Power Analysis (SPA) [Mangard et al., 2010] "

1. also used for synchronizing a fault injection

THALES

Power Consumption of Data
The power comsumption of an instruction depends on its data
> Simple leakage model: Hamming Weight of data
DPA Book [Mangard et al., 2010] extract

Mean Traces for the 9 Different Hamming Weights

200

150

100 |

50F

Voltage [mV]

100 200 300 400 500
Time [ns]

THALES

Power Consumption of Data
The power comsumption of an instruction depends on its data
> Simple leakage model: Hamming Weight of data
DPA Book [Mangard et al., 2010] extract

Mean Traces for the 9 Different Hamming Weights
200 ; T T T

150

100 |

50F

Voltage [mV]

100 200 300 400 500
Time [ns]
> Simple but works in practice !
> Typical exploitation examples: Differential Power Analysis [Kocher et al., 1999] and Correlation Power
Analysis [Brier et al., 2004]

i

Counter-measure Against SCA

Hiding
> Add noise to reduce the signal to noise ratio
> Examples: dummy instruction, instruction or loop shuffling, semantic variants (function or instruction)

> Does not remove leakage but makes it harder to exploit (more traces are needed)
Masking

> Make the manipulated data statistically independent from the secret values
> Can be formally proven

> Power measurements are theoretically independent of the secret

THALES

Masking

At order d
> Split a secret sinto d + 1 parts (a.k.a shares) sy, st,..., Sy such than s = 5o *x S1 * ... x Sy
> So,..., Sg—1 are d uniform randoms (a.k.a “masks”)
> S¢g = S%* Sp* S *... x S,

> Any combination of less than d shares is statistically independant from the secret

> First-order boolean masking:

> Sg is a uniform random
> 8 =5®DS

THALES

Masking of a "AND" Operation

> Consider 2 boolean shared values a = (a0, al) and b = (b0,b1) at order 1

> How to securely compute c, also shared, such thatc = a.b?

THALES

Masking of a "AND" Operation

> Consider 2 boolean shared values a = (a0, al) and b = (b0,b1) at order 1
> How to securely compute c, also shared, such thatc = a.b?

> We want cO and c1 suchthatcO & c1 = (a0 @ al).(b0 & b1) without computing a and b

THALES

Masking of a "AND" Operation

> Consider 2 boolean shared values a = (a0, al) and b

(b0,b1) at order 1
> How to securely compute c, also shared, such that c

]

a.b?
> We want cO and c1 suchthatcO & c1 = (a0 @ al).(b0 & b1) without computing a and b
> NB:cO @ c1 = (a0 @ al).(b0 @ bl)

= (a0.b0 & a0.bl & al.b0 @ al.bl)

THALES

8/29

Masking of a "AND" Operation

> Consider 2 boolean shared values a = (a0, al) and b

(b0,b1) at order 1
> How to securely compute c, also shared, such that c

]

a.b?
> We want cO and c1 suchthatcO & c1 = (a0 @ al).(b0 & b1) without computing a and b
> NB:cO @ c1 = (a0 @ al).(b0 @ bl)
= (a0.b0 @ a0.bl @ al.b0 @ al.bl)
= need to compute all the products (.) and reduce the computation (+)

THALES

8/29

Masking of a "AND" Operation

> Consider 2 boolean shared values a = (a0, al) and b

(b0,b1) at order 1
> How to securely compute c, also shared, such that c

]

a.b?
> We want cO and c1 suchthatcO & c1 = (a0 @ al).(b0 & b1) without computing a and b
> NB:cO @ c1 = (a0 @ al).(b0 @ bl)

= (a0.b0 @ a0.bl @ al.b0 @ al.bl)

= need to compute all the products (.) and reduce the computation (+)
=- any reduction of two terms leads to a leakage of a or b

THALES

8/29

Masking of a "AND" Operation

> Consider 2 boolean shared values a = (a0, al) and b

(b0,b1) at order 1
> How to securely compute c, also shared, such that c

]

a.b?
> We want cO and c1 suchthatcO & c1 = (a0 @ al).(b0 & b1) without computing a and b
> NB:cO @ c1 = (a0 @ al).(b0 @ bl)

= (a0.b0 @ a0.bl @ al.b0 @ al.bl)

= need to compute all the products (.) and reduce the computation (+)
=- any reduction of two terms leads to a leakage of a or b
€.gcO = a0.b0 @ al0.bl, ci

al.b0 @ al.blleaksb

THALES

8/29

Masking of a "AND" Operation

> Consider 2 boolean shared values a = (a0, al) and b = (b0,b1) at order 1
> How to securely compute c, also shared, such thatc = a.b?

> We want cO and c1 suchthatcO & c1 = (a0 @ al).(b0 & b1) without computing a and b

> NB:cO @ c1 = (a0 @ al).(b0 @ bl)
= (a0.b0 @ a0.bl @ al.b0 & al.bl)

= need to compute all the products (.) and reduce the computation (+)
=- any reduction of two terms leads to a leakage of a or b

€.gcO = a0.b0 & a0.bl, c1 = al.b0 & al.blleaksb

€.gcO = a0.b0 @ al.bl, cl = al.b0 @ a0.blleaks aandb

THALES

Masking of a "AND" Operation

> Consider 2 boolean shared values a = (a0, al) and b = (b0,b1) at order 1
> How to securely compute c, also shared, such thatc = a.b?

> We want cO and c1 suchthatcO & c1 = (a0 @ al).(b0 & b1) without computing a and b

> NB:cO @ c1 = (a0 @ al).(b0 @ bl)
= (a0.b0 @ a0.bl @ al.b0 & al.bl)

= need to compute all the products (.) and reduce the computation (+)
=- any reduction of two terms leads to a leakage of a or b

€.gcO = a0.b0 & a0.bl, c1 = al.b0 & al.blleaksb

€.gcO = a0.b0 @ al.bl, cl = al.b0 @ a0.blleaks aandb

= additionnal randoms are necessary to make the computation secure

THALES

Masking of a "AND" Operation

> Consider 2 boolean shared values a = (a0, al) and b = (b0,b1) at order 1
> How to securely compute c, also shared, such thatc = a.b?

> We want cO and c1 suchthatcO & c1 = (a0 @ al).(b0 & b1) without computing a and b

> NB:cO @ c1 = (a0 @ al).(b0 @ bl)
= (a0.b0 @ a0.bl @ al.b0 & al.bl)

= need to compute all the products (.) and reduce the computation (+)
=- any reduction of two terms leads to a leakage of a or b

€.gcO = a0.b0 & a0.bl, c1 = al.b0 & al.blleaksb

€.gcO = a0.b0 @ al.bl, cl = al.b0 @ a0.blleaks aandb

= additionnal randoms are necessary to make the computation secure

> Different masking schemes have been proposed ISW-AND [Ishai et al., 2003],
DOM-AND [Gross et al., 2016], TI-AND [Nikova et al., 2006]

THALES

a0

b0

b1

al

THALES

Example: Masked AND at Order 1

a0

al

a0.b0

a0.blernd

al .bOernd

a0.blerndeal bl

D——{ D=

*

Q

o
L

void masked_and(uint8_t a0, uint8_t ail,
uint8_t b0, uint8_t bil,
uint8_t rnd,
uint8_t *cO, uint8_t *cl)

= ((a0 & b0) ~ rnd) -~ (al & bl);

7 *%cl = ((a0 & b1) ~ rnd) ~ (al & bO);
8| return;

9/29

Example: Masked AND at Order 1

a0

b0

b1

al

a0

a0.b0

a0.blernd

al .bOernd

al

THALES

a0.blerndeal bl

NI

1

2
3
4
5
6
7
8

9
10
11
12
13

void masked_and(uint8_t a0, uint8_t ail,
uint8_t b0, uint8_t bi,

uint8_t r,
uint8_t *cO, uint8_t *c1)
{
uint8_t tmp = (a0 & bl) ~ r;
__asm__ __volatile__ ("" "memory") ;
*cO = tmp ~ (al & b0);
tmp = (a0 & b0) ~ r;
__asm__ __volatile__ ("" "memory") ;
*cl = tmp ~ (al & bl);
return;
}

10/29

a0

b0

b1

al

Example: Masked AND at Order 1

a0

a0.b0

a0.blernd

al .bOernd

a0.blerndeal bl

al

THALES

;r0:a0, r1:b0, r2:al,

and.w
eors
and.w
ands
ands
eors
eors
eors
str
str

r4d,
r4,
r5,
r0,
r3,
rd,
r0,
r4,
r0,
r4,

r0, r3
r7
r2, rl
rl
r2
rb5
r7
r3

>

>

>

3

[r6, #0]
[r6, #4]

a0
t0
al
a0
bl
t1
c0
cl

r3:bl, r6:c[] r7:r

Il &

bl
(a0 & b1) - r
b0
b0
al
t0 - (al & b0)
(a0 & b0) - r

=t1 =~ (al & bl)

11/29

Plan

1. Background on Side-Channel Attacks
2. Masked Implementation Verification

3. Microarchitecture modelling for masked software
verification

How To Verify a Masked Implementation?

Empirically

> Perform power simulations or acquisitions then use statistical metrics, such as the t-test

int ¢ = a & 0x8

eor r4,r4,r6;

DD

Masked Implementation

THALES

Power Model
/
Measurement

Power Traces

Statistical
Analysis

13/29

How To Verify a Masked Implementation?

Empirically

> Perform power simulations or acquisitions then use statistical metrics, such as the t-test

int ¢ = a & 0x8

P M 1
eor r4,r4,r6; ower/ ode

DD

Masked Implementation

Measurement

Pros : Complex circuits/software analysis

Cons : No guarantee, leakages are difficult to
locate

THALES

Statistical
Power Traces Analysis

> MAPS [Corre et al., 2018],
PROLEAD [Muller and Moradi, 2022],
ELMO [McCann et al., 2017] or
ROSITA [Shelton et al., 2021]

13/29

How To Verify a Masked Implementation?
Formally

> Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d-probing model [Ishai et al., 2003]

> The attacker has d probes that can capture d intermediate values during the execution
> Assume a value leakage model

How To Verify a Masked Implementation?

Formally

> Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d-probing model [Ishai et al., 2003]
> The attacker has d probes that can capture d intermediate values during the execution

> Assume a value leakage model

Example with a method based on symbolic expression

Masked Implementation
tmp = (a®@ & bl) ™ rnd;
*c@ = tmp M (al & b0O);
tmp = (a@ & bO) ™ rnd;
*cl = tmp N (al & bl);

THALES

14/29

How To Verify a Masked Implementation?

Formally

> Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d-probing model [Ishai et al., 2003]

> The attacker has d probes that can capture d intermediate values during the execution
> Assume a value leakage model

Example with a method based on symbolic expression

THALES

Masked Implementation

Expression List

tmp
*cO
tmp

*cl

(a® & bl) " rnd;
tmp N (al & bO);
(a® & bO) ™ rnd;

tmp N (al & bl);

-a0 & bl

Prover

—

14/29

How To Verify a Masked Implementation?

Formally

> Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d-probing model [Ishai et al., 2003]

> The attacker has d probes that can capture d intermediate values during the execution
> Assume a value leakage model
Example with a method based on symbolic expression

THALES

Masked Implementation

Expression List

tmp
*cO
tmp

*cl

(a® & bl) " rnd;
tmp N (al & bO);
(a® & bO) ™ rnd;

tmp N (al & bl);

-a0 & bl
-(a® & bl) ™ rnd)

R

Prover

14/29

How To Verify a Masked Implementation?

Formally
> Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model
d-probing model [Ishai et al., 2003]
> The attacker has d probes that can capture d intermediate values during the execution
> Assume a value leakage model
Example with a method based on symbolic expression

Masked Implementation Expression List
-a0 & bl — -
tmp = (a0 & bl) * rnd; -(a0 & bl) ~ rnd) — —v
- al & bO — —
*c® = tmp N (al & b0O);

(a® & bO) " rnd; Prover

tmp

*cl = tmp ~ (al & bl);

How To Verify a Masked Implementation?

Formally

> Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d-probing model [Ishai et al., 2003]

> The attacker has d probes that can capture d intermediate values during the execution
> Assume a value leakage model
Example with a method based on symbolic expression

THALES

Masked Implementation

Expression List

tmp
*cO
tmp

*cl

(a® & bl) " rnd;
tmp N (al & bO);
(a® & bO) ™ rnd;

tmp N (al & bl);

-a0 & bl

-(a® & bl) ™ rnd)

- al & bo

-(a® & bl) ” rnd
N (al & b0)

AR

Prover

—
Y 4
—-v
-

14/29

How To Verify a Masked Implementation?

Formally

> Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d-probing model [Ishai et al., 2003]

> The attacker has d probes that can capture d intermediate values during the execution
> Assume a value leakage model
Example with a method based on symbolic expression

THALES

Masked Implementation

Expression List

tmp
*cO
tmp

*cl

(a® & bl) " rnd;
tmp N (al & bO);
(a® & bO) ™ rnd;

tmp N (al & bl);

-a0 & bl

-(a® & bl) ™ rnd)

- al & bo

-(a® & bl) ” rnd
N (al & b0)

-a0 & bo

-(a® & bO) “~rnd

-al & bl

-(a® & bO) “rnd

N(al & bl)

AR

RAR

Prover

Y 4
—-v
-

—
—
-

14/29

How To Verify a Masked Implementation?

Formally

> Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d-probing model [Ishai et al., 2003]

> The attacker has d probes that can capture d intermediate values during the execution
> Assume a value leakage model

Pros: Absence of secret leakage is guaranteed for the chosen model, easier to locate and undestand
leakages

Cons: Scalability issues, potential false positive,
proven-secure implementations in the d-probing model can leak

> MaskVerif [Barthe et al., 2019], ARISTI [Ben El Ouahma et al., 2019],
LeakageVerif [Meunier et al., 2023], VerifMSI [Meunier and Taleb, 2023]

How To Verify a Masked Implementation?
Formally

> Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d-probing model with transition

> The attacker has d probes that can capture transitions during the execution
> Assume a transition leakage model

How To Verify a Masked Implementation?
Formally

> Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d-probing model with transition

> The attacker has d probes that can capture transitions during the execution
> Assume a transition leakage model

Example with a method based on symbolic expression

Masked Implementation Expression List

3 2
= (a® & bl) ™ rnd;

*c® = tmp N (al & b0O);

= (a® & bO) ™ rnd; Prover

*cl = tmp ~ (al & bl);

How To Verify a Masked Implementation?

Formally

> Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker

model and a leakage model
d-probing model with transition

> The attacker has d probes that can capture transitions during the execution

> Assume a transition leakage model

Example with a method based on symbolic expression

Masked Implementation

Expression List

: (a® & bl) ~ rnd;

*c® = tmp ~ (al & b0O);

: (a® & bO) ~ rnd;

*cl = tmp ~ (al & bl);

THALES

-(a® & bl) ™ rnd
N

(a® & bO) ~ rnd

Prover

15/29

How To Verify a Masked Implementation?
Formally

> Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d-probing model with transition

> The attacker has d probes that can capture transitions during the execution
> Assume a transition leakage model

Example with a method based on symbolic expression
Masked Implementation Expression List

: (a® & bl) ~ rnd;
*c® = tmp ~ (al & b0O);

@)= (a0 & bo) " rnd: Prover

*cl = tmp ~ (al & bl);

-(a® & bl) ™ rnd — —X
N

(a® & bO) ~ rnd

> Perform verification at the assembly level to detect vulnerabilities post-compilation

Proven Leakage-Free Implementation in Practice

> Software “ISW And” proven leakage-free at the ISA level in the value leakage model and transition
leakage model (GPRs).

1| ;r0:a0, r1:b0, r2:al, r3:bl, r6:c[] r7:m
2| and.w r4, r0O, r3 ; a0 & bl

3| eors r4, r7 ; t0 = (a0 & b1l) " m
4| and.w r5, r2, rl ; al & b0

5| ands 10, ril ; a0 & b0

6| ands r3, r2 ; bl & a1l

7| eors r4, r5 ; t1 = t0 ~ (al & bO)
8| eors r0, r7 ; cO= (a0 & b0) " m
9| eors r4, r3 ; c1 =t1 - (al & bl)
10| str r0, [r6, #0]

11| str 4, [r6, #4]

12

THALES

16/29

Proven Leakage-Free Implementation in Practice

> Software “ISW And” proven leakage-free at the ISA level in the value leakage model and transition
leakage model (GPRs).

1| ;r0:a0, r1:b0, r2:al, r3:bl, r6:c[] r7:m
2| and.w r4, r0O, r3 ; a0 & bl

3| eors r4, r7 ; t0 = (a0 & b1l) " m
4| and.w r5, r2, rl ; al & b0

5| ands 10, ril ; a0 & b0

6| ands r3, r2 ; bl & a1l

7| eors r4, r5 ; t1 = t0 ~ (al & bO)
8| eors r0, r7 ; cO= (a0 & b0) " m
9| eors r4, r3 ; c1 =t1 - (al & bl)
10| str r0, [r6, #0]

11| str 4, [r6, #4]

12

THALES

0.8

Correlation (50000 traces)
©w ES o o

o
N
T

A ‘

a=a0”al ——
b=b0 b1 ——

c=c0”cl

S

0
80

! \
. 110 120 130
Time (sample)

140

16/29

Proven Leakage-Free Implementation in Practice
> Software “ISW And” proven leakage-free at the ISA level in the value leakage model and transition

leakage model (GPRs). 08
a=a0*al ——
b=b0 b1 ——
o7l c=c0”cl
/‘30,57 4
1| ;r0:a0, r1:b0, r2:al, r3:bl, r6:c[] r7:m 8
2| and.w r4, r0O, r3 ; a0 & bl ©
3| eors r4, r7 ; t0 = (a0 & b1) “ m ;0'5’ Bl
4| and.w r5, r2, rl ; al & b0 8
5| ands 10, ril ; a0 & b0 o
6| ands 3, r2 ; bl & at L4y il
7| eors r4, r5 ; t1 = t0 ~ (al & bO) 8
8| eors 10, 7 ;3 0 = (a0 & b0) ~ m Tosl]
9| eors r4, r3 ; ¢l =t1 - (al & bl) @
10| str r0, [r6, #0] S
11| str r4, [r6, #4] Qo2 ,
12
0.1F -
NUA-AS Vo

o ')
80 90 00 _ 110 120 130 140
Time (sample)

> Need for modelling leakage happening in the circuit at the micro-architectural level while software is
executed to capture leakage that can not be modeled at ISA level

Plan

1. Background on Side-Channel Attacks
2. Masked Implementation Verification

3. Microarchitecture modelling for masked software
verification

ARMISTICE: Micro-Architectural Leakage Modelling for Masked

Software Formal Verification
Arnaud de Grandmaison 2, Karine Heydemann, Quentin L. Meunier3
published in IEEE Transaction Computer-Aided Design 2022 and presented at the conference
CASES 2022

2. Arm
3. Sorbonne Université/LIP6

Case Study: Board STM32F1 [De Grandmaison et al., 2022]

> Arm Cortex-M3: modeled from the Verilog
source code

Case Study: Board STM32F1 [De Grandmaison et al., 2022]

> Arm Cortex-M3: modeled from the Verilog Port D BusD
source code |

Port A

MuxA] (I

MuxRegA @

MuxB

RegFile

La |
MuxRegB RegB

DataAdd
Data Adder

#imm / sh

aWrite

MuxDataReg

Lol
WREAddrL pegaddri DataReg

#imm

LSU

Formatting
Extraction

MuxRegAddr2 RegAddr2

dr DataOut Dataln

Case Study: Board STM32F1 [De Grandmaison et al., 2022]

> Arm Cortex-M3: modeled from the Verilog
source code

> Memoire: black-box approach (no HDL
description available)

THALES

Port D

BusD

RegFile

MuxA

MuxB

Port A

MuxRegA

MuxRegB

#imm / sh

uxRegAddrl

#imm

DataAdd

Data Adder

La |
RegAddri

MuxRegAddr2

La
RegAddr2

MuxDataReg

DataReg

aWrite

LSU

Formatting
Extraction

DataOut Dataln

19/29

Case Study: Board STM32F1 [De Grandmaison et al., 2022]

> Arm Cortex-M3: modeled from the Verilog Port D BusD
source code |

Port A

> Memoire: black-box approach (no HDL e]
. . . uX 4
description available)
Port B MuxRegA @
> Design of several micro-benchmarks a.k.a. RegFile Mo T
“leakage test vectors”:
> Detection of leakage sources A6 RegB
(blaCk‘bOX) #imm / sh DataAdd
Data Adder
Lol
RegImry
UXReQAdArL Loy MyxDataReg o2 e
2) (<
#imm B 2
L E E
MuxRegAddr2 RegAddr2 LSU é 5
Addr DataOut Dataln

Case Study: Board STM32F1 [De Grandmaison et al., 2022]

> Arm Cortex-M3: modeled from the Verilog
source code

> Memoire: black-box approach (no HDL
description available)

> Design of several micro-benchmarks a.k.a.
“leakage test vectors”:

> Detection of leakage sources
(black-box)

Addr
AddrBuffer

CPU.DataOut
—-

CPU.Dataln
Memory —

ReadWriteBuffer

THALES

Port D

BusD

RegFile

MuxA

MuxB

Port A

MuxRegA

MuxRegB

#imm / sh

uxRegAddrl

#imm

DataAdd

Data Adder

Ll
RegAddrl

MuxRegAddr2

L
RegAddr2

MuxDataReg

DataReg

aWrite

LSU

Formatting
Extraction

DataOut Dataln

19/29

Case Study: Board STM32F1 [De Grandmaison et al., 2022]

> Arm Cortex-M3: modeled from the Verilog
source code

> Memoire: black-box approach (no HDL
description available)

> Design of several micro-benchmarks a.k.a.
“leakage test vectors”:

> Detection of leakage sources
(black-box)
> Validation (white-box)

Addr
AddrBuffer

CPU.DataOut
—-

CPU.Dataln
Memory —

ReadWriteBuffer

THALES

Port D

BusD

RegFile

MuxA

MuxB

Port A

MuxRegA

MuxRegB

#imm / sh

uxRegAddrl

#imm

DataAdd

Data Adder

Ll
RegAddrl

MuxRegAddr2

L
RegAddr2

MuxDataReg

DataReg

aWrite

LSU

Formatting
Extraction

DataOut Dataln

19/29

Case Study: Board STM32F1 [De Grandmaison et al., 2022]

> Arm Cortex-M3: modeled from the Verilog
source code

> Memoire: black-box approach (no HDL
description available)

> Design of several micro-benchmarks a.k.a.
“leakage test vectors”:

> Detection of leakage sources
(black-box)

> Validation (white-box)

> Ranking

Addr
AddrBuffer

CPU.DataOut
—-

CPU.Dataln
Memory —

ReadWriteBuffer

THALES

Port D

BusD

RegFile

MuxA

MuxB

Port A

MuxRegA

MuxRegB

#imm / sh

uxRegAddrl

#imm

DataAdd

Data Adder

Ll
RegAddrl

MuxRegAddr2

L
RegAddr2

MuxDataReg

DataReg

aWrite

LSU

Formatting
Extraction

DataOut Dataln

19/29

Leakage test vectors over

At Jrarger] rpton
IS0 FR T foom. v imfurm 2[R AND DEC ¢

Lea kqge Test Vectors — ‘7:::7"‘ = e = t.,.'“ﬁ

RELORADD—Jv7n—Jam2Mi]ADD- ALU-DEC. ENC. 1M
ReSLORADDt—Jvim—fmari[ADD AL [oe e fortesun eskage when sxecng

S
— — e
. ISeaEORISLS Ji6m. v Tmbum 321 [ALU. DEC, ENC.LSL_____[Designed for esting leakage when excevting a shit by an immediate instruction (LSL)
> 77 carefully designed test vectors e R,
EC_ENC, o hen when xccuin o IEAOVS i M(mmmmummmmu rand
> 31 for the data path components —— ==
: . : . e
involved in each instruction e ; .
> 5 for forwarding mechanisms ““'“"“'-‘“-—:_ e ‘°::::‘;:::::::::‘:::1“:";‘3‘“z;ﬁ:‘;“;:;‘:"1:::“7;;“‘:1:::‘:":" e —
[ScabWDLSUALUTRm — BmO2MALU FWD.MEM _ IDcsignod for testing leakage relaied to the forwarding of loaded value 1o u siore insiruction wi \(hammnhduh ot
2 csgned for esting leakage in the LSU in c ‘nstruction with a register offset. and related t the address bus.
7 for th iting back i h e e
I Or t e ertlng aC |nt0 t e [SeaMEM. = P [ADDR MEM o cned for s eskase i he LSUn i of LDR it o & reaiter ol nd slied o e addres b
register file e e
> 34 for analysis of the LSU and the -
modelling of the memory. _— f:rz;:::::,,::mz\
i esigned for testi \cn alicrnating Iarb and s
[e
> Description and results online: https: =
//www-soc.lip6.fr/armistice Y
i —_—,——,—
l)m mﬂnmmw\ ukage relatec re st s
m?l:\l)nwwj e L: = YRR
E_ cigned for testing lcakage el SirA+ 64, 5w A0 S A+ 6]
M. ST Iln“\)ﬁdf\)v(n(l 2 leakage el ofa byte) Tixed addresse Sir SirA+ 61 SwA+0 SuA+ 6
\us AIL Pok RFG csgned for testing leakage relaied
7n R REG- s of one by T R6) of the tegister e
/\H H)R REG: TR6) of the tegister ke
THALES _:::::i:‘ o ke T —

https://www-soc.lip6.fr/armistice
https://www-soc.lip6.fr/armistice

Findings Using Leakage Vectors

> Leakage without any link to the data manipulated by
instructions !

> Instruction encodings (16-bit versus 32-bit) can impact
leakage

> Part of immediate in the encoding can be used to read
the register bank

> Forwarding mechanism

> Intra-word leakage in the LSU

> The required number of traces varies with the source of
leakage

> ..

> We did not have the RTL version corresponding to the CPU
of our target!

THALES

8 &8 8§ 8

T-Test Value

xor-1dri6bit-xor

Op0*Op1 ——
Op0”0Op2 ——
[Op0 » Op3
\ | 1Op1~0Op2
[\ | \Op1*0Op3
| | \‘Op2 AOp3 ——

‘ [

15 20 25 30 35 40
Time (sample)

xor-1dr32bit-xor

520 25 %0 @ &
Time (sample)

21/29

Arm Cortex-M3: Exemple

BusD

Port D DEC EXE1
Port A
MuxA E—
Port B MuxRegA @K
MuxB [1] ALUOut
MuxRegB ngg
#imm / sh MuxDataAdder
Data Adder
Ly |
RegImm
EXE2
MuxDataWrite
L Ly | MuyxDataReg
uxRegAddrl RegAddrl DataReg
1 o
£
#imm %
£
MuxRegAddr2 Raghddr2 5
Addr

THALES

Extraction

DataOut Dataln

Arm Cortex-M3: Exemple

Port D

DEC EXE1

BusD

MuxA

MuxB

eorr6, r4, r5

THALE

Port A

Por B

ml

>

MuxRegA Reg

#imm

#imm / sh

uxRegAddrl Py

MuxRegB

@]

L
Reg

MuxDataAdder

Data Adder

ALUOut

EXE2

RegAddr1

MuxRegAddr2 Iﬁ;der

S

MuxDataReg
Dai

MuxDataWritg

taReg

Formatting
Extraction

DataOut Dataln

PortA:

PortB

MuxRegA / RegA:
MuxRegB / RegB:
ALUOut

ml
mo0
ml
mO0

22/29

Arm Cortex-M3: Exemple

Port D

DEC

EXE1l

BusD

MuxA

MuxB

k ® m0

eorr6, r4, r5
eorr8,r6, r7

Port A

#

uxR

MuxRegB

timm / sh

ml & m0

MuxRegA v

bl
@

Q
=1

e

L
Reg;

MuxDataAdder

egAddrl

#imm

Data Adder

ALUOut

EXE2

L
RegAddr1

MuxRegAddr2 Iﬁider

THALES

MuxDataReg
Da

MuxDataWritg

taReg

Formatting
Extraction

DataOut Dataln

PortA:

PortB

MuxRegA / RegA:
MuxRegB / RegB:
ALUOut

mO0
mil

ml & m0

k @ m0
ml & mO

k ® m0

22/29

Arm Cortex-M3: Exemple

Extraction

Port D DEC EXE1 BusD
Port A ke mil
MuxA I
Pory B MuxRegA @;
MuxB [ALUOut
MuxRegB @g
#imm / sh MuxDataAdder
Data Adder
Ly |
RegImm
EXE2
eor r6, r4, r5 MuxDataWrite
eorr8, r6, r7 uxRegAddrl ,ﬁ M XDataRegDataReg
[Addr Adder 2
#imm l,‘u:“
£
MuxRegAddr2 Ragaddr2 5
w
Addr

THALES

DataOut Dataln

PortA:

PortB

MuxRegA / RegA:
MuxRegB / RegB:
ALUOut

mil 0

m0 k ® m0
ml ml & m0
mO k @ m0

mlem0 keml

22/29

Arm Cortex-M3: Exemple

Port D DEC EXE1 BusD PortA: ml 0 ml
PortB m0 k @ mO k
Port A P MuxRegA / RegA: m1 mlem0 mo
MuxA] [MuxRegB / RegB: m0 k @ mO k
Port B ALUOut mlem0 ke ml k & mo

MuxRegA v

bl
@

Q
>

MuxB ALUOuUt

MuxRegB =<3

RegB
#imm / sh MuxDataAdder
Data Adder
Lol
RegImm

EXE2

MuxDataWritg

eorr6, r4, r5
eorr8, r6, r7 uxRegAddrl

Ly
RegAddri

MyixDataReg
DataReg

[#imm

Formatting

MuxRegAddr2 @Kddrz

Extraction

DataOut Dataln

THALES

ARMISTICE Framework

JExpressions

Leakage 5 - — s 1or
Model Execution Trace | ‘ -]._.To Verify:
Processor . Port A:
Model —>f|eor r6, r4, r5 ml ® 0

re, r7 Port B:

eor r8,

Input
File mo © (k © mo)
.exe 000
Entry Execution Results
Point Trace Port A:
. Generator No Leakage
Symbolic Arm Cortex-M3) Port B: 15 Secret
Variables \ J Leakage Leakage
(Secret, (Arm _ISA ... Lict
Mask, N 4
Public)

Expression

Symbolic
Leakage

Execution
Engine

Analyzer

Back on the Leaking “ISW And”

g » DEC I1 12 13 I4 15 16 17 18
5 & EXEf 11 12 13 14 I5 I6 I7 I8
o8 EXE2 17 18
Tnstructions Leaks: expr. name o2 MEWM 17 | 18
1 and.wth, 2, 71 MuxRegh, Regh. €0 Expressions €0 906'231 €263 64 5 €6 7 ol el el el
RegB: el
12 ands r0, ril PortA, RegA: €2 07} q
AluOut: €3 gragtal—
T3 | ands r3, r2 AluOut: e4 P D
T4 | eors ré4, 5 RegB: €5 06 1
15 eors r0, r7 AluOut: €6 ~
16 eors r4, r3 AluOut: €7 é 05l i
17 str r0, [r6, #0] - g
18 str r4, [r6, #4] PortB, RegB, DataReg, S
DataOut, BufferMem: €7 S 04l 1
8
Nom Expression Fuites c
60 a0 b1 @ ai a,c 20 1
el | a0 - b1 & b0 b, c °
e2 | a0 @ at ac 5 02l |
e3 | a0 - b0 @ al - b0 ac O
e4 | a0 - b0 P at - b1 a b, c
e5 | al-b0d bl b, c 01l |
e6 | a0 - b0 P a0 - b1 @ at - b0 a b, c
e7 |a0-b0@ ad-bt@al-b0Odal-bl |abc
%o 110 140

Time (sample)

THALES

ARMISTICE Results Validation

8 masked applications from the litterature

Results summary

> Absence of leakage in the value based model for correct masking schemes

> At least one secret leakage due to micro-architecture in all programs, even those designed to be
secured w.r.t. the Arm Cortex-M3 micro-architecture (Dilithium AND and A2B)

> At least one leakage for 22 out of 27 modeled components

Accuracy and Exploitability (1/2)

> Manual analysis of the leakage resulting from the first round of the Key Schedule
> 8 considered expressions (simplest ones)
> Experimental leakage assessment using specific t-test with 500,000 traces

Accuracy and Exploitability (1/2)
> Manual analysis of the leakage resulting from the first round of the Key Schedule
> 8 considered expressions (simplest ones)
> Experimental leakage assessment using specific t-test with 500,000 traces

350 5 50 250,

300 4 200 200
250 3
200) A ‘ ’ 150 150
150 1 ! 100 100
100) 0 f U “ T ’
‘f N l 50 50
50| (1 w ! ﬂ i y l\
| =i
R 2 u R
00 250 @00 @0 400 40 500 00 250 300 350 400 450 500 300 250 300 350 400 450 500 00 260 300 3o 400 450 500
Key[12] ~ Key[15] (ex0) Key[12] ~ Key[14] (ex1) Key[14] ~ Key[15] (ex2) SBox[Key[12]] (ex3)
50, 00, 1200, 1200,
1000) 1000|
200 150
800 800
150
100 600) 600)
100
} l 50) 400 400|
50 |
200 200
\ 1y | Ak
Al ot N i N I
R
. P -V /| G S | S
200 250 300 350 400 450 500 250 300 350 400 450 500 550 600 200 250 300 350 400 450 500 200 250 300 350 400 450 500
SBox[Key[14]] (ex4) SBox[Key[15]] (ex5) SBox[Key[12]] ~ SBox[Key[15]] (ex6) SBox[Key[14]] ~ SBox[Key[15]] (ex7)

Accuracy and Exploitability (2/2)
Leakages found but not observed

> 8-bit transition in a GPR, not observable
> 8-bit transition on Bus B, not observable
> Stall cycle from the memory, could be removed with a better memory model

Accuracy and Exploitability (2/2)
Leakages found but not observed
> 8-bit transition in a GPR, not observable
> 8-bit transition on Bus B, not observable
> Stall cycle from the memory, could be removed with a better memory model
Leveraging ARMISTICE output
> Addition of carefully designed instructions to clean the part of the data path involved in the leaking
transition

o

ex0—— ex4
exl—— ex5——

T-Test Value (500000 traces)

o

0100 200 300 400 500 600 700 800 900 1000

Conclusion and Future Work

ARMISTICE
> A framework for formally proving the absence of secret leakage in a masked code
> Based on the micro-architectural details of a Arm Cortex-M3 core and a memory model
> Model close to reality, good match between found leakages and observed leakages

> Locates secret leakages in time and space along with the corresponding expressions, which in turn can
help remove them

Future work

> Avoid the manual generation of the micro-architecture model
= Automate the verification from a RTL description, a binary code and information on shares (secrets
and masks) and sources of randoms

> Consider glitches

= Noé Amiot, current PhD on this topic at LIP6, stay tuned!

Thank you

and many thanks to Quentin Meunier*, Noé Amiot* and Simon Tollec ® for their slides!

4. LIP6/Sorbonne University
5. Thales

References |

@ Barthe, G., Belaid, S., Cassiers, G., Fouque, P-A., Grégoire, B., and Standaert, F.-X. (2019).
maskverif : Automated verification of higher-order masking in presence of physical defaults.
In Computer Security — ESORICS 2019 : 24th European Symposium on Research in Computer
Security, Luxembourg, September 23-27, 2019, Proceedings, Part |, page 300-318, Berlin, Heidelberg.
Springer-Verlag.

@ Ben El Ouahma, I., Meunier, Q. L., Heydemann, K., and Encrenaz, E. (2019).
Side-channel robustness analysis of masked assembly codes using a symbolic approach.
Journal of Cryptographic Engineering, 9 :231-242.

[Brier, E., Clavier, C., and Olivier, F. (2004).
Correlation power analysis with a leakage model.
In Joye, M. and Quisquater, J.-J., editors, CHES 2004, volume 3156 of LNCS, pages 16—29. Springer,
Berlin, Heidelberg.

References i

@ Corre, Y. L., GroBschadl, J., and Dinu, D. (2018).
Micro-architectural power simulator for leakage assessment of cryptographic software on ARM
Cortex-M3 processors.
In Fan, J. and Gierlichs, B., editors, COSADE 2018, volume 10815 of LNCS, pages 82—-98. Springer,
Cham.

ﬁ De Grandmaison, A., Heydemann, K., and Meunier, Q. L. (2022).
Armistice : Microarchitectural leakage modeling for masked software formal verification.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 41(11) :3733-3744.

@ Gross, H., Mangard, S., and Korak, T. (2016).
Domain-oriented masking : Compact masked hardware implementations with arbitrary protection order.
In Proceedings of the 2016 ACM Workshop on Theory of Implementation Security, TIS '16, page 3,
New York, NY, USA. Association for Computing Machinery.

@ Ishai, Y., Sahai, A., and Wagner, D. (2003).
Private circuits : Securing hardware against probing attacks.
In Annual International Cryptology Conference, pages 463—481. Springer.

References lll

[§ Kocher, P. C., Jaffe, J., and Jun, B. (1999).
Differential power analysis.
In Wiener, M. J., editor, CRYPTO’99, volume 1666 of LNCS, pages 388-397. Springer, Berlin,
Heidelberg.

[Mangard, S., Oswald, E., and Popp, T. (2010).
Power Analysis Attacks : Revealing the Secrets of Smart Cards.
Springer Publishing Company, Incorporated, 1st edition.

@ McCann, D., Oswald, E., and Whitnall, C. (2017).
Towards practical tools for side channel aware software engineering : ‘grey box’ modelling for instruction
leakages.
In Kirda, E. and Ristenpart, T., editors, USENIX Security 2017, pages 199—216. USENIX Association.

[Meunier, Q. and Taleb, A. (2023).
Verifmsi : Practical verification of hardware and software masking schemes implementations.
In 20th International Conference on Security and Cryptography, volume 1, pages 520-527. SciTePress.

References IV

@ Meunier, Q. L., Pons, E., and Heydemann, K. (2023).
Leakageverif : Efficient and scalable formal verification of leakage in symbolic expressions.
volume 49, page 3359,Ai3375. IEEE Press.

[Miller, N. and Moradi, A. (2022).
PROLEAD A probing-based hardware leakage detection tool.
IACR TCHES, 2022(4) :311-348.

@ Nikova, S., Rechberger, C., and Rijmen, V. (2006).
Threshold implementations against side-channel attacks and glitches.
In Ning, P., Qing, S., and Li, N., editors, Information and Communications Security, pages 529-545,
Berlin, Heidelberg. Springer Berlin Heidelberg.

@ Shelton, M. A., Samwel, N., Batina, L., Regazzoni, F., Wagner, M., and Yarom, Y. (2021).
Rosita : Towards automatic elimination of power-analysis leakage in ciphers.
In NDSS 2021. The Internet Society.

	Background on Side-Channel Attacks
	Masked Implementation Verification
	Microarchitecture modelling for masked software verification

