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Introduction: Side-Channel Attacks



The power consumption of a CPU-based device differs with the executed instructions

Example of a naive fast exponentiation
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Typical exploitation example: Simple Power Analysis (SPA) [Mangard et al., 2010] 1

1. also used for synchronizing a fault injection
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Power Consumption of Instructions



The power comsumption of an instruction depends on its data
Simple leakage model: Hamming Weight of data

DPA Book [Mangard et al., 2010] extract

Simple but works in practice !
Typical exploitation examples: Differential Power Analysis [Kocher et al., 1999] and Correlation Power
Analysis [Brier et al., 2004]
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Power Consumption of Data



Hiding

Add noise to reduce the signal to noise ratio

Examples: dummy instruction, instruction or loop shuffling, semantic variants (function or instruction)

Does not remove leakage but makes it harder to exploit (more traces are needed)

Masking

Make the manipulated data statistically independent from the secret values

Can be formally proven

Power measurements are theoretically independent of the secret
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Counter-measure Against SCA



At order d
Split a secret s into d + 1 parts (a.k.a shares) s0, s1,..., sd such than s = s0 ? s1 ? ... ? sd

s0, ..., sd−1 are d uniform randoms (a.k.a “masks”)

sd = s ? s0 ? s1 ? ... ? sd1

Any combination of less than d shares is statistically independant from the secret

First-order boolean masking:

s0 is a uniform random

s1 = s0 ⊕ s
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Masking



Consider 2 boolean shared values a = (a0, a1) and b = (b0,b1) at order 1

How to securely compute c, also shared, such that c = a.b?

We want c0 and c1 such that c0 ⊕ c1 = (a0 ⊕ a1).(b0 ⊕ b1) without computing a and b

NB: c0 ⊕ c1 = (a0 ⊕ a1).(b0 ⊕ b1)
= (a0.b0 ⊕ a0.b1 ⊕ a1.b0 ⊕ a1.b1)

⇒ need to compute all the products (.) and reduce the computation (+)

⇒ any reduction of two terms leads to a leakage of a or b

e.g c0 = a0.b0 ⊕ a0.b1, c1 = a1.b0 ⊕ a1.b1 leaks b

e.g c0 = a0.b0 ⊕ a1.b1, c1 = a1.b0 ⊕ a0.b1 leaks a and b

⇒ additionnal randoms are necessary to make the computation secure

Different masking schemes have been proposed ISW-AND [Ishai et al., 2003],
DOM-AND [Gross et al., 2016], TI-AND [Nikova et al., 2006]
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a1.b0⊕rnd

a0.b1⊕rnd

a0.b1⊕rnd⊕a1.b1

a1.b0⊕rnd⊕a0.b0

1 void masked_and(uint8_t a0, uint8_t a1,
2 uint8_t b0, uint8_t b1,
3 uint8_t rnd,
4 uint8_t *c0, uint8_t *c1)
5

6 *c0 = ((a0 & b0) ^ rnd) ^ (a1 & b1);
7 *c1 = ((a0 & b1) ^ rnd) ^ (a1 & b0);
8 return;
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Example: Masked AND at Order 1
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1 void masked_and(uint8_t a0, uint8_t a1,
2 uint8_t b0, uint8_t b1,
3 uint8_t r,
4 uint8_t *c0, uint8_t *c1)
5 {
6 uint8_t tmp = (a0 & b1) ^ r;
7 __asm__ __volatile__ ("" ::: "memory");
8 *c0 = tmp ^ (a1 & b0);
9 tmp = (a0 & b0) ^ r;

10 __asm__ __volatile__ ("" ::: "memory");
11 *c1 = tmp ^ (a1 & b1);
12 return;
13 }
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1 ;r0:a0, r1:b0, r2:a1, r3:b1, r6:c[] r7:r
2

3 and.w r4, r0, r3 ; a0 & b1
4 eors r4, r7 ; t0 = (a0 & b1) ^ r
5 and.w r5, r2, r1 ; a1 & b0
6 ands r0, r1 ; a0 & b0
7 ands r3, r2 ; b1 & a1
8 eors r4, r5 ; t1 = t0 ^ (a1 & b0)
9 eors r0, r7 ; c0 = (a0 & b0) ^ r

10 eors r4, r3 ; c1 = t1 ^ (a1 & b1)
11 str r0, [r6, #0]
12 str r4, [r6, #4]
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2. Masked Implementation Verification

3. Microarchitecture modelling for masked software
verification
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Plan



Empirically
Perform power simulations or acquisitions then use statistical metrics, such as the t-test

int c = a & 0x8

eor r4,r4,r6;
Power Model

/
Measurement

Masked Implementation Power Traces
Statistical 
 Analysis

Pros : Complex circuits/software analysis

Cons : No guarantee, leakages are difficult to
locate

MAPS [Corre et al., 2018],
PROLEAD [Müller and Moradi, 2022],
ELMO [McCann et al., 2017] or
ROSITA [Shelton et al., 2021]
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Formally
Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d -probing model [Ishai et al., 2003]
The attacker has d probes that can capture d intermediate values during the execution
Assume a value leakage model

Example with a method based on symbolic expression
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Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d -probing model [Ishai et al., 2003]
The attacker has d probes that can capture d intermediate values during the execution
Assume a value leakage model

Example with a method based on symbolic expression

Pros: Absence of secret leakage is guaranteed for the chosen model, easier to locate and undestand
leakages

Cons: Scalability issues, potential false positive,
proven-secure implementations in the d-probing model can leak
MaskVerif [Barthe et al., 2019], ARISTI [Ben El Ouahma et al., 2019],
LeakageVerif [Meunier et al., 2023], VerifMSI [Meunier and Taleb, 2023]
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Formally
Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d -probing model with transition
The attacker has d probes that can capture transitions during the execution
Assume a transition leakage model

Example with a method based on symbolic expression

Perform verification at the assembly level to detect vulnerabilities post-compilation
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Software “ISW And” proven leakage-free at the ISA level in the value leakage model and transition
leakage model (GPRs).

1 ;r0:a0, r1:b0, r2:a1, r3:b1, r6:c[] r7:m
2 and.w r4, r0, r3 ; a0 & b1
3 eors r4, r7 ; t0 = (a0 & b1) ^ m
4 and.w r5, r2, r1 ; a1 & b0
5 ands r0, r1 ; a0 & b0
6 ands r3, r2 ; b1 & a1
7 eors r4, r5 ; t1 = t0 ^ (a1 & b0)
8 eors r0, r7 ; c0 = (a0 & b0) ^ m
9 eors r4, r3 ; c1 = t1 ^ (a1 & b1)

10 str r0, [r6, #0]
11 str r4, [r6, #4]
12
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a = a0 ^ a1
b = b0 ^ b1
c = c0 ^ c1

Need for modelling leakage happening in the circuit at the micro-architectural level while software is
executed to capture leakage that can not be modeled at ISA level
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Software “ISW And” proven leakage-free at the ISA level in the value leakage model and transition
leakage model (GPRs).

1 ;r0:a0, r1:b0, r2:a1, r3:b1, r6:c[] r7:m
2 and.w r4, r0, r3 ; a0 & b1
3 eors r4, r7 ; t0 = (a0 & b1) ^ m
4 and.w r5, r2, r1 ; a1 & b0
5 ands r0, r1 ; a0 & b0
6 ands r3, r2 ; b1 & a1
7 eors r4, r5 ; t1 = t0 ^ (a1 & b0)
8 eors r0, r7 ; c0 = (a0 & b0) ^ m
9 eors r4, r3 ; c1 = t1 ^ (a1 & b1)

10 str r0, [r6, #0]
11 str r4, [r6, #4]
12
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1. Background on Side-Channel Attacks

2. Masked Implementation Verification

3. Microarchitecture modelling for masked software
verification
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ARMISTICE: Micro-Architectural Leakage Modelling for Masked
Software Formal Verification

Arnaud de Grandmaison 2, Karine Heydemann, Quentin L. Meunier 3

published in IEEE Transaction Computer-Aided Design 2022 and presented at the conference
CASES 2022

2. Arm
3. Sorbonne Université/LIP6
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Arm Cortex-M3: modeled from the Verilog
source code

Memoire: black-box approach (no HDL
description available)

Design of several micro-benchmarks a.k.a.
“leakage test vectors”:

Detection of leakage sources
(black-box)
Validation (white-box)
Ranking

Memory

Addr

CPU.DataIn

ReadWriteBuffer

AddrBuffer

CPU.DataOut
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77 carefully designed test vectors

31 for the data path components
involved in each instruction

5 for forwarding mechanisms

7 for the writing back into the
register file

34 for analysis of the LSU and the
modelling of the memory.

Description and results online: https:
//www-soc.lip6.fr/armistice

Leakage test vectors overview
Vector Archs Targets Tags Description

SeqAND.EOR.1 v6m, v7m stm32f1 ALU, AND, DEC, EOR Designed for testing leakage between non identical ALU instructions
SeqAND.EOR.2 v6m, v7m stm32f1 ALU, AND, DEC, EOR Designed for testing leakage between non identical ALU instructions
SeqEOR.ADD.1 v7m stm32f1 ADD, ALU, DEC, ENC, IMM Designed for testing leakage when executing a 32bit ADD with immediate instruction
SeqEOR.ADD.2 v7m stm32f1 ADD, ALU, DEC, ENC, IMM Designed for testing leakage when executing a 16bit ADD with immediate instruction
SeqEOR.ADD.3 v7m stm32f1 ADD, ALU, DEC, ENC, IMM Designed for testing leakage when execution a 16bit ADD with immediate instruction
SeqEOR.ADD.4 v7m stm32f1 ADD, ALU Designed for testing leakage when executing an ADD instruction
SeqEOR.AND.1 v6m, v7m stm32f1 ALU, AND, DEC, EOR Designed for testing leakage between non identical ALU instructions
SeqEOR.AND.2 v6m, v7m stm32f1 ALU, AND, DEC, EOR Designed for testing leakage between non identical ALU instructions
SeqEOR.EOR.1 v6m, v7m stm32f1 ALU, DEC, EOR, PRE/POSTAMBLE Designed for testing leakage when executing an EOR instruction
SeqEOR.EOR.2 v6m, v7m stm32f1 ALU, DEC, EOR, PRE/POSTAMBLE Designed for testing leakage when executing an EOR instruction
SeqEOR.EOR.3 v6m, v7m stm32f1 ALU, DEC, EOR, PRE/POSTAMBLE Designed for testing leakage when execution an EOR instruction
SeqEOR.EOR.4 v6m, v7m stm32f1 ALU, DEC, EOR Designed for testing leakage between non consecutive EOR instructions
SeqEOR.EOR.5 v7m stm32f1 ALU, DEC, EOR, IMM Designed for testing leakage when executing a XOR instruction with an immediate operand
SeqEOR.Imm.Imm v6m, v7m stm32f1 ADD, ALU, CMP, DEC, EOR, IMM Designed for testing leakage between consecutive data read in RegFile in case of immediate in the decoded 32 bits instruction
SeqEOR.Imm.Imm.1 v6m, v7m stm32f1 ADD, ALU, CMP, DEC, EOR, IMM Designed for testing leakage between consecutive data read in RegFile in case of immediate in the decoded 32 bits instruction
SeqEOR.Imm.Imm.2 v6m, v7m stm32f1 ADD, ALU, CMP, DEC, EOR, IMM Designed for testing leakage between consecutive data read in RegFile in case of immediate in the decoded 32 bits instruction
SeqEOR.Imm.Imm.3 v6m, v7m stm32f1 ADD, ALU, CMP, DEC, EOR, IMM Designed for testing leakage between consecutive data read in RegFile in case of immediate in the decoded 32 bits instruction
SeqEOR.LD.1 v6m, v7m stm32f1 DEC, ENC, LD Designed for testing leakage related to 16-bit encoding of ldr
SeqEOR.LD.2 v6m, v7m stm32f1 DEC, ENC, LD Designed for testing leakage related to 32-bit encoding of ldr
SeqEOR.LSL.1 v6m, v7m stm32f1 ALU, DEC, ENC, LSL Designed for testing leakage when executing a shift by an immediate instruction (LSL)
SeqEOR.LSL.2 v6m, v7m stm32f1 ALU, DEC, ENC, LSL Designed for testing leakage when executing a shift by an immediate instruction (LSL)
SeqEOR.LSL.3 v6m, v7m stm32f1 ALU, DEC, ENC, LSL Designed for testing leakage when executing a shift by an immediate instruction (LSL)
SeqEOR.LSL.4 v6m, v7m stm32f1 ALU, DEC, ENC, LSL Designed for testing leakage when executing a shift by an immediate instruction (LSL)
SeqEOR.MOV.1 v7m stm32f1 ALU, DEC, ENC, IMM, MOV Designed for testing leakage when executing a 32bit MOV instruction with an immediate operand
SeqEOR.MOV.2 v7m stm32f1 ALU, DEC, ENC, IMM, MOV Designed for testing leakage when when executing a 16bit MOVS instruction with an immediate operand
SeqEOR.MOV.4 v7m stm32f1 ALU, DEC, ENC, MOV Designed for testing leakage when executing a 32bit MOV register instruction
SeqEOR.MOV.5 v7m stm32f1 ALU, DEC, ENC, MOV Designed for testing leakage when executing a 32bit MOVS register instruction
SeqEOR.MOV.6 v6m, v7m stm32f1 ALU, DEC, ENC, MOV Designed for testing leakage when execution a 16bit MOVS register instruction
SeqEOR.MOV.7 v6m, v7m stm32f1 ALU, DEC, ENC, MOV Designed for testing leakage when execution a 16bit MOV register instruction
SeqEOR.ST.1 v6m, v7m stm32f1 DEC, ST Designed for testing leakage related to a store instruction with an addressing mode using an immediate offset
SeqEOR.ST.2 v6m, v7m stm32f1 DEC, ST Designed for testing leakage related to a store instruction with an addressing mode using a register offset
SeqEOR.movw v6m, v7m stm32f1 ALU, DEC, MOV Designed for testing leakage related to a MOVW instruction
SeqEOR.nop v6m, v7m stm32f1 ALU, DEC, NOP Designed for testing leakage related to a nop instruction
SeqFWD.ALU.1 v7m stm32f1 ALU, EOR, FWD Designed for testing leakage related to the forwarding to an ALU instruction for its first operand a result from an ALU instruction
SeqFWD.ALU.2 v7m stm32f1 ALU, EOR, FWD Designed for testing leakage related to the forwarding to an ALU instruction for its second operand a result from an ALU instruction
SeqFWD.LSU.1 v7m stm32f1 DATA, FWD, LD-ST, MEM Designed for testing leakage related to the forwarding of loaded value to a store instruction with an immediate offset
SeqFWD.LSU.2 v7m stm32f1 DATA, FWD, LD-ST, MEM Designed for testing leakage related to forward of loaded value to a store instruction with a register offset
SeqFWD.LSU.ALU.1 v7m stm32f1 ALU, FWD, MEM Designed for testing leakage related to the forwarding of loaded value to a store instruction with an immediate offset
SeqMEM.ADDR.1 v7m stm32f1 ADDR, MEM Designed for testing leakage in the LSU in case of LDR instruction with a register offset, and related to the address bus
SeqMEM.ADDR.2 v7m stm32f1 ADDR, MEM Designed for testing leakage in the LSU in case of LDR instruction with a register offset, and related to the address bus
SeqMEM.ADDR.3 v7m stm32f1 ADDR, MEM Designed for testing leakage in the LSU in case of LDR instruction with a register offset, and related to the address bus
SeqMEM.LD.1 v7m stm32f1 DATA, LD-LD, MEM Designed for testing leakage related to consecutive and non consecutive loads at fixed word-aligned addresses in RAM
SeqMEM.LD.2 v7m stm32f1 DATA, LD-LD, MEM Designed for testing leakage related to consecutive loads at fixed word-aligned addresses in RAM
SeqMEM.LD.3 v7m stm32f1 DATA, LD-LD, MEM Designed for testing leakage related to consecutive and non consecutive loads (of bytes) at fixed word-aligned addresses in RAM
SeqMEM.LD.4 v7m stm32f1 DATA, LD-LD, MEM Designed for testing leakage related to consecutive loads (of a byte) at fixed word-aligned addresses in RAM
SeqMEM.LD.5 v7m stm32f1 DATA, EXTRACT, LD-LD, MEM Designed for testing leakage related to consecutive loads (of a byte) at fixed (not word-aligned) addresses in RAM
SeqMEM.LD.6 v7m stm32f1 DATA, EXTRACT, LD-LD, MEM Designed for testing leakage related to consecutive loads (of a byte) at fixed addresses in RAM
SeqMEM.LD.7 v7m stm32f1 DATA, EXTRACT, LD-LD, MEM Designed for testing leakage related to consecutive loads (of a half-word) at fixed addresses in RAM
SeqMEM.LD.8 v7m stm32f1 DATA, EXTRACT, LD-LD, MEM Designed for testing leakage related to consecutive loads (of a half-word) at fixed addresses in RAM
SeqMEM.LD.ST.1 v7m stm32f1 DATA, LD-ST, MEM Designed for testing leakage when alternating ldr and str
SeqMEM.LD.ST.2 v7m stm32f1 DATA, LD-ST, MEM Designed for testing leakage when alternating ldr and str
SeqMEM.LD.ST.3 v7m stm32f1 DATA, LD-ST, MEM Designed for testing leakage when alternating ldrb and strb
SeqMEM.LD.ST.4 v7m stm32f1 DATA, LD-ST, MEM Designed for testing leakage when alternating ldrb and strb
SeqMEM.LD.ST.5 v7m stm32f1 DATA, LD-ST, MEM Designed for testing leakage when alternating ldrb and strb
SeqMEM.LD.ST.6 v7m stm32f1 DATA, LD-ST, MEM Designed for testing leakage when alternating ldrb and strb
SeqMEM.LD.ST.7 v7m stm32f1 DATA, LD-ST, MEM Designed for testing leakage when alternating ldrb and strb
SeqMEM.LD.ST.8 v7m stm32f1 DATA, LD-ST, MEM Designed for testing leakage when alternating ldrb and strb
SeqMEM.LD.UA.1 v7m stm32f1 DATA, LD-LD, MEM, UNALIGNED Designed for testing leakage related to consecutive unaligned loads at fixed addresses in RAM
SeqMEM.LD.UA.2 v7m stm32f1 DATA, LD-LD, MEM, UNALIGNED Designed for testing leakage related to consecutive unaligned loads at fixed addresses in RAM separated by a XOR
SeqMEM.LDD.1 v7m stm32f1 DATA, LDD, MEM Designed for testing leakage related to load double instruction and to consecutive load-double instruction at fixed addresses in RAM
SeqMEM.LDD.2 v7m stm32f1 DATA, LDD, MEM Designed for testing leakage related to load double instruction and to consecutive load-double instruction at fixed addresses in RAM
SeqMEM.ST.1 v7m stm32f1 DATA, MEM, ST-ST Designed for testing leakage related to successive store instructions with different addressing mode. Aligned accesses
SeqMEM.ST.2 v7m stm32f1 DATA, MEM, ST-ST Designed for testing leakage related to successive store instructions with different addressing mode. Aligned accesses
SeqMEM.ST.3 v7m stm32f1 DATA, MEM, ST-ST Designed for testing leakage related to successive store instructions with different addressing mode. Aligned accesses
SeqMEM.ST.4 v7m stm32f1 DATA, MEM, ST-ST Designed for testing leakage related to successive store instructions with different addressing mode. Aligned accesses
SeqMEM.ST.5 v7m stm32f1 DATA, MEM, ST-ST Designed for testing leakage related to successive store instructions with different size. Aligned accesses
SeqMEM.ST.6 v7m stm32f1 DATA, MEM, ST-ST Designed for testing leakage related to successive store instructions with different size. Aligned accesses
SeqMEM.ST.WB.1 v7m stm32f1 DATA, MEM, ST-ST, WB Designed for testing leakage related to consecutive stores (of words) at the same fixed addresse Str A + 0, Str A + 64, Str A + 0, Str A + 64
SeqMEM.ST.WB.2 v7m stm32f1 DATA, MEM, ST-ST, WB Designed for testing leakage related to consecutive stores (of words) at the same fixed addresse Str A + 0, Str A + 64, Str A + 0, Str A + 64
SeqMEM.ST.WB.3 v7m stm32f1 DATA, MEM, ST-ST, WB Designed for testing leakage related to consecutive stores (of a byte) at the same fixed addresse Str A + 0, Str A + 64, Str A + 0, Str A + 64
SeqWB.r0 v7m stm32f1 ALU, EOR, REG-WB Designed for testing leakage related to consecutive writes in a register (R0) of the register file
SeqWB.r0.byte.1 v7m stm32f1 ALU, EOR, REG-WB Designed for testing leakage related to consecutive writes of one byte in registers (R0 and R6) of the register file
SeqWB.r0.byte.2 v7m stm32f1 ALU, EOR, REG-WB Designed for testing leakage related to consecutive writes of one byte in registers (R0 and R6) of the register file
SeqWB.r0.byte.3 v7m stm32f1 ALU, EOR, REG-WB Designed for testing leakage related to consecutive writes of one byte in registers (R0 and R6) of the register file
SeqWB.r4 v6m, v7m stm32f1 ALU, EOR, REG-WB Designed for testing leakage related to consecutive writes in a register (R4) of the register file
SeqWB.r5 v7m stm32f1 ALU, EOR, REG-WB Designed for testing leakage related to consecutive writes in a register (R5) of the register file
SeqWB.r7 v7m stm32f1 ALU, EOR, REG-WB Designed for testing leakage related to consecutive writes in a register (R7) of the register file
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Leakage without any link to the data manipulated by
instructions !

Instruction encodings (16-bit versus 32-bit) can impact
leakage

Part of immediate in the encoding can be used to read
the register bank

Forwarding mechanism

Intra-word leakage in the LSU

The required number of traces varies with the source of
leakage

...

We did not have the RTL version corresponding to the CPU
of our target !
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Instructions Leaks: expr. name
I1 and.w r5, r2, r1 MuxRegA, RegA: e0

RegB: e1
I2 ands r0, r1 PortA, RegA: e2

AluOut: e3
I3 ands r3, r2 AluOut: e4
I4 eors r4, r5 RegB: e5
I5 eors r0, r7 AluOut: e6
I6 eors r4, r3 AluOut: e7
I7 str r0, [r6, #0] -
I8 str r4, [r6, #4] PortB, RegB, DataReg,

DataOut, BufferMem: e7

Nom Expression Fuites
e0 a0 · b1 ⊕ a1 a, c
e1 a0 · b1 ⊕ b0 b, c
e2 a0 ⊕ a1 a, c
e3 a0 · b0 ⊕ a1 · b0 a, c
e4 a0 · b0 ⊕ a1 · b1 a, b, c
e5 a1 · b0 ⊕ b1 b, c
e6 a0 · b0 ⊕ a0 · b1 ⊕ a1 · b0 a, b, c
e7 a0 · b0 ⊕ a0 · b1 ⊕ a1 · b0 ⊕ a1 · b1 a, b, c
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8 masked applications from the litterature

Results summary

Absence of leakage in the value based model for correct masking schemes

At least one secret leakage due to micro-architecture in all programs, even those designed to be
secured w.r.t. the Arm Cortex-M3 micro-architecture (Dilithium AND and A2B)

At least one leakage for 22 out of 27 modeled components
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Manual analysis of the leakage resulting from the first round of the Key Schedule
8 considered expressions (simplest ones)
Experimental leakage assessment using specific t-test with 500,000 traces
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Leakages found but not observed
8-bit transition in a GPR, not observable
8-bit transition on Bus B, not observable
Stall cycle from the memory, could be removed with a better memory model

Leveraging ARMISTICE output
Addition of carefully designed instructions to clean the part of the data path involved in the leaking
transition
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ARMISTICE
A framework for formally proving the absence of secret leakage in a masked code

Based on the micro-architectural details of a Arm Cortex-M3 core and a memory model

Model close to reality, good match between found leakages and observed leakages

Locates secret leakages in time and space along with the corresponding expressions, which in turn can
help remove them

Future work

Avoid the manual generation of the micro-architecture model
⇒ Automate the verification from a RTL description, a binary code and information on shares (secrets
and masks) and sources of randoms

Consider glitches

⇒ Noé Amiot, current PhD on this topic at LIP6, stay tuned !
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Thank you

and many thanks to Quentin Meunier4, Noé Amiot 4 and Simon Tollec 5 for their slides !

4. LIP6/Sorbonne University
5. Thales
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