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Introduction: Side-Channel Attacks
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Power Consumption of Instructions

The power consumption of a CPU-based device differs with the executed instructions

> Example of a naive fast exponentiation

SquareMult(z, e, N):
let en, ..., e1 be the bits of e
y+1
for i =n down to 1 {
y + Square(y) (S)
y ¢ ModReduce(y, N) (R)
if ¢; = 1 then {
¥ Mult(y, 2) ()
y < ModReduce(y, N) (R)| =
}
return y

1. also used for synchronizing a fault injection
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The power consumption of a CPU-based device differs with the executed instructions
> Example of a naive fast exponentiation
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0 i o o i o o i
let en, ..., e1 be the bits of e - r—’% N — N — N —— Square
yel Multiply
for i =n down to 1 {
Y ¢ Square(y) ()
y < ModReduce(y, N) (R)
if e; =1 then { :
y 4+ Mult(y, z) (M)
y + ModReduce(y, N) (R)| =
}
}
return y

1. also used for synchronizing a fault injection

THALES



Power Consumption of Instructions

The power consumption of a CPU-based device differs with the executed instructions
> Example of a naive fast exponentiation

SquareMult(z, e, N):

let en, ..., e1 be the bits of e - r—’% A r—’% /\ /\ — N —— Square
yel Multiply
for i =n down to 1 {
Y ¢ Square(y) ()
y < ModReduce(y, N) (R)
if ¢; =1 then { !
y 4+ Mult(y, z) (M)
y + ModReduce(y, N) (R)| =
}
+ .
return y

> Typical exploitation example: Simple Power Analysis (SPA) [Mangard et al., 2010] "

1. also used for synchronizing a fault injection
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Power Consumption of Data
The power comsumption of an instruction depends on its data
> Simple leakage model: Hamming Weight of data
DPA Book [Mangard et al., 2010] extract

Mean Traces for the 9 Different Hamming Weights
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Power Consumption of Data
The power comsumption of an instruction depends on its data
> Simple leakage model: Hamming Weight of data
DPA Book [Mangard et al., 2010] extract

Mean Traces for the 9 Different Hamming Weights
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150

100 |

50F

Voltage [mV]

100 200 300 400 500
Time [ns]
> Simple but works in practice !
> Typical exploitation examples: Differential Power Analysis [Kocher et al., 1999] and Correlation Power
Analysis [Brier et al., 2004]
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Counter-measure Against SCA

Hiding
> Add noise to reduce the signal to noise ratio
> Examples: dummy instruction, instruction or loop shuffling, semantic variants (function or instruction)

> Does not remove leakage but makes it harder to exploit (more traces are needed)
Masking

> Make the manipulated data statistically independent from the secret values
> Can be formally proven

> Power measurements are theoretically independent of the secret
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Masking

At order d
> Split a secret sinto d + 1 parts (a.k.a shares) sy, st,..., Sy such than s = 5o *x S1 * ... x Sy
> So,..., Sg—1 are d uniform randoms (a.k.a “masks”)
> S¢g = S%* Sp* S *... x S,

> Any combination of less than d shares is statistically independant from the secret

> First-order boolean masking:

> Sg is a uniform random
> 8 =5®DS
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Masking of a "AND" Operation

> Consider 2 boolean shared values a = (a0, al) and b = (b0,b1) at order 1

> How to securely compute c, also shared, such thatc = a.b?
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Masking of a "AND" Operation

> Consider 2 boolean shared values a = (a0, al) and b

(b0,b1) at order 1
> How to securely compute c, also shared, such that c

]

a.b?
> We want cO and c1 suchthatcO & c1 = (a0 @ al).(b0 & b1) without computing a and b
> NB:cO @ c1 = (a0 @ al).(b0 @ bl)

= (a0.b0 & a0.bl & al.b0 @ al.bl)
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Masking of a "AND" Operation

> Consider 2 boolean shared values a = (a0, al) and b = (b0,b1) at order 1
> How to securely compute c, also shared, such thatc = a.b?

> We want cO and c1 suchthatcO & c1 = (a0 @ al).(b0 & b1) without computing a and b

> NB:cO @ c1 = (a0 @ al).(b0 @ bl)
= (a0.b0 @ a0.bl @ al.b0 & al.bl)

= need to compute all the products (.) and reduce the computation (+)
=- any reduction of two terms leads to a leakage of a or b

€.gcO = a0.b0 & a0.bl, c1 = al.b0 & al.blleaksb

€.gcO = a0.b0 @ al.bl, cl = al.b0 @ a0.blleaks aandb

= additionnal randoms are necessary to make the computation secure

> Different masking schemes have been proposed ISW-AND [Ishai et al., 2003],
DOM-AND [Gross et al., 2016], TI-AND [Nikova et al., 2006]
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Example: Masked AND at Order 1

a0

al

a0.b0

a0.blernd

al .bOernd

a0.blerndeal bl

D——{ D=

*

Q

o
L

void masked_and(uint8_t a0, uint8_t ail,
uint8_t b0, uint8_t bil,
uint8_t rnd,
uint8_t *cO, uint8_t *cl)

= ((a0 & b0) ~ rnd) -~ (al & bl);

7 *%cl = ((a0 & b1) ~ rnd) ~ (al & bO);
8| return;

9/29



Example: Masked AND at Order 1
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THALES

a0.blerndeal bl

NI

1

2
3
4
5
6
7
8

9
10
11
12
13

void masked_and(uint8_t a0, uint8_t ail,
uint8_t b0, uint8_t bi,

uint8_t r,
uint8_t *cO, uint8_t *c1)
{
uint8_t tmp = (a0 & bl) ~ r;
__asm__ __volatile__ ("" "memory") ;
*cO = tmp ~ (al & b0);
tmp = (a0 & b0) ~ r;
__asm__ __volatile__ ("" "memory") ;
*cl = tmp ~ (al & bl);
return;
}
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Example: Masked AND at Order 1

a0

a0.b0

a0.blernd

al .bOernd

a0.blerndeal bl

al
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;r0:a0, r1:b0, r2:al,

and.w
eors
and.w
ands
ands
eors
eors
eors
str
str

r4d,
r4,
r5,
r0,
r3,
rd,
r0,
r4,
r0,
r4,

r0, r3
r7
r2, rl
rl
r2
rb5
r7
r3

>

>

>

3

[r6, #0]
[r6, #4]

a0
t0
al
a0
bl
t1
c0
cl

r3:bl, r6:c[] r7:r

Il &

bl
(a0 & b1) - r
b0
b0
al
t0 - (al & b0)
(a0 & b0) - r

=t1 =~ (al & bl)
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How To Verify a Masked Implementation?

Empirically

> Perform power simulations or acquisitions then use statistical metrics, such as the t-test

int ¢ = a & 0x8

eor r4,r4,r6;

DD

Masked Implementation

THALES

Power Model
/
Measurement

Power Traces

Statistical
Analysis
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How To Verify a Masked Implementation?

Empirically

> Perform power simulations or acquisitions then use statistical metrics, such as the t-test

int ¢ = a & 0x8

P M 1
eor r4,r4,r6; ower/ ode

DD

Masked Implementation

Measurement

Pros : Complex circuits/software analysis

Cons : No guarantee, leakages are difficult to
locate

THALES

Statistical
Power Traces Analysis

> MAPS [Corre et al., 2018],
PROLEAD [Muller and Moradi, 2022],
ELMO [McCann et al., 2017] or
ROSITA [Shelton et al., 2021]
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How To Verify a Masked Implementation?
Formally

> Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d-probing model [Ishai et al., 2003]

> The attacker has d probes that can capture d intermediate values during the execution
> Assume a value leakage model
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> Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d-probing model [Ishai et al., 2003]
> The attacker has d probes that can capture d intermediate values during the execution

> Assume a value leakage model

Example with a method based on symbolic expression

Masked Implementation
tmp = (a®@ & bl) ™ rnd;
*c@ = tmp M (al & b0O);
tmp = (a@ & bO) ™ rnd;
*cl = tmp N (al & bl);
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Masked Implementation

Expression List

tmp
*cO
tmp

*cl

(a® & bl) " rnd;
tmp N (al & bO);
(a® & bO) ™ rnd;

tmp N (al & bl);

-a0 & bl

Prover

—
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> Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model
d-probing model [Ishai et al., 2003]
> The attacker has d probes that can capture d intermediate values during the execution
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Example with a method based on symbolic expression

Masked Implementation Expression List
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(a® & bO) " rnd; Prover

tmp

*cl = tmp ~ (al & bl);
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How To Verify a Masked Implementation?

Formally

> Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d-probing model [Ishai et al., 2003]

> The attacker has d probes that can capture d intermediate values during the execution
> Assume a value leakage model

Pros: Absence of secret leakage is guaranteed for the chosen model, easier to locate and undestand
leakages

Cons: Scalability issues, potential false positive,
proven-secure implementations in the d-probing model can leak

> MaskVerif [Barthe et al., 2019], ARISTI [Ben El Ouahma et al., 2019],
LeakageVerif [Meunier et al., 2023], VerifMSI [Meunier and Taleb, 2023]



How To Verify a Masked Implementation?
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> Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d-probing model with transition

> The attacker has d probes that can capture transitions during the execution
> Assume a transition leakage model
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How To Verify a Masked Implementation?

Formally

> Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker

model and a leakage model
d-probing model with transition

> The attacker has d probes that can capture transitions during the execution

> Assume a transition leakage model

Example with a method based on symbolic expression

Masked Implementation

Expression List

: (a® & bl) ~ rnd;

*c® = tmp ~ (al & b0O);

: (a® & bO) ~ rnd;

*cl = tmp ~ (al & bl);

THALES

-(a® & bl) ™ rnd
N

(a® & bO) ~ rnd

Prover
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How To Verify a Masked Implementation?
Formally

> Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d-probing model with transition

> The attacker has d probes that can capture transitions during the execution
> Assume a transition leakage model

Example with a method based on symbolic expression
Masked Implementation Expression List

: (a® & bl) ~ rnd;
*c® = tmp ~ (al & b0O);

@)= (a0 & bo) " rnd: Prover

*cl = tmp ~ (al & bl);

-(a® & bl) ™ rnd — —X
N

(a® & bO) ~ rnd

> Perform verification at the assembly level to detect vulnerabilities post-compilation



Proven Leakage-Free Implementation in Practice

> Software “ISW And” proven leakage-free at the ISA level in the value leakage model and transition
leakage model (GPRs).

1| ;r0:a0, r1:b0, r2:al, r3:bl, r6:c[] r7:m
2| and.w r4, r0O, r3 ; a0 & bl

3| eors r4, r7 ; t0 = (a0 & b1l) " m
4| and.w r5, r2, rl ; al & b0

5| ands 10, ril ; a0 & b0

6| ands r3, r2 ; bl & a1l

7| eors r4, r5 ; t1 = t0 ~ (al & bO)
8| eors r0, r7 ; cO= (a0 & b0) " m
9| eors r4, r3 ; c1 =t1 - (al & bl)
10| str  r0, [r6, #0]

11| str 4, [r6, #4]

12
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Proven Leakage-Free Implementation in Practice
> Software “ISW And” proven leakage-free at the ISA level in the value leakage model and transition

leakage model (GPRs). 08
a=a0*al ——
b=b0 b1 ——
o7l c=c0”cl
/‘30,57 4
1| ;r0:a0, r1:b0, r2:al, r3:bl, r6:c[] r7:m 8
2| and.w r4, r0O, r3 ; a0 & bl ©
3| eors r4, r7 ; t0 = (a0 & b1) “ m ;0'5’ Bl
4| and.w r5, r2, rl ; al & b0 8
5| ands 10, ril ; a0 & b0 o
6| ands 3, r2 ; bl & at L4y il
7| eors r4, r5 ; t1 = t0 ~ (al & bO) 8
8| eors 10, 7 ;3 0 = (a0 & b0) ~ m Tosl ]
9| eors r4, r3 ; ¢l =t1 - (al & bl) @
10| str  r0, [r6, #0] S
11| str r4, [r6, #4] Qo2 ,
12
0.1F -
NUA-AS Vo

o ' )
80 90 00 _ 110 120 130 140
Time (sample)

> Need for modelling leakage happening in the circuit at the micro-architectural level while software is
executed to capture leakage that can not be modeled at ISA level
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ARMISTICE: Micro-Architectural Leakage Modelling for Masked

Software Formal Verification
Arnaud de Grandmaison 2, Karine Heydemann, Quentin L. Meunier3
published in IEEE Transaction Computer-Aided Design 2022 and presented at the conference
CASES 2022

2. Arm
3. Sorbonne Université/LIP6



Case Study: Board STM32F1 [De Grandmaison et al., 2022]

> Arm Cortex-M3: modeled from the Verilog
source code
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> Arm Cortex-M3: modeled from the Verilog Port D BusD
source code |

Port A

MuxA ] (I

MuxRegA @

MuxB

RegFile

La |
MuxRegB RegB

DataAdd
Data Adder

#imm / sh

aWrite

MuxDataReg

Lol
WREAddrL  pegaddri DataReg

#imm

LSU

Formatting
Extraction

MuxRegAddr2  RegAddr2

dr DataOut Dataln



Case Study: Board STM32F1 [De Grandmaison et al., 2022]

> Arm Cortex-M3: modeled from the Verilog
source code

> Memoire: black-box approach (no HDL
description available)
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Port D

BusD

RegFile

MuxA

MuxB

Port A

MuxRegA

MuxRegB

#imm / sh

uxRegAddrl

#imm

DataAdd

Data Adder

La |
RegAddri

MuxRegAddr2

La
RegAddr2

MuxDataReg

DataReg

aWrite

LSU

Formatting
Extraction

DataOut Dataln
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Case Study: Board STM32F1 [De Grandmaison et al., 2022]

> Arm Cortex-M3: modeled from the Verilog Port D BusD
source code |

Port A

> Memoire: black-box approach (no HDL e ]
. . . uX 4
description available)
Port B MuxRegA @
> Design of several micro-benchmarks a.k.a. RegFile Mo T
“leakage test vectors”:
> Detection of leakage sources A6 RegB
(blaCk‘bOX) #imm / sh DataAdd
Data Adder
Lol
RegImry
UXReQAdArL Loy MyxDataReg o2 e
2) (<
#imm B 2
L E E
MuxRegAddr2  RegAddr2 LSU é 5
Addr DataOut Dataln



Case Study: Board STM32F1 [De Grandmaison et al., 2022]

> Arm Cortex-M3: modeled from the Verilog
source code

> Memoire: black-box approach (no HDL
description available)

> Design of several micro-benchmarks a.k.a.
“leakage test vectors”:

> Detection of leakage sources
(black-box)
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> Arm Cortex-M3: modeled from the Verilog
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> Memoire: black-box approach (no HDL
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> Ranking
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Findings Using Leakage Vectors

> Leakage without any link to the data manipulated by
instructions !

> Instruction encodings (16-bit versus 32-bit) can impact
leakage

> Part of immediate in the encoding can be used to read
the register bank

> Forwarding mechanism

> Intra-word leakage in the LSU

> The required number of traces varies with the source of
leakage

> ..

> We did not have the RTL version corresponding to the CPU
of our target!
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Arm Cortex-M3: Exemple
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Arm Cortex-M3: Exemple
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Arm Cortex-M3: Exemple
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Arm Cortex-M3: Exemple
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Arm Cortex-M3: Exemple
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ARMISTICE Framework
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Back on the Leaking “ISW And”
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ARMISTICE Results Validation

8 masked applications from the litterature

Results summary

> Absence of leakage in the value based model for correct masking schemes

> At least one secret leakage due to micro-architecture in all programs, even those designed to be
secured w.r.t. the Arm Cortex-M3 micro-architecture (Dilithium AND and A2B)

> At least one leakage for 22 out of 27 modeled components



Accuracy and Exploitability (1/2)

> Manual analysis of the leakage resulting from the first round of the Key Schedule
> 8 considered expressions (simplest ones)
> Experimental leakage assessment using specific t-test with 500,000 traces
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Accuracy and Exploitability (2/2)
Leakages found but not observed

> 8-bit transition in a GPR, not observable
> 8-bit transition on Bus B, not observable
> Stall cycle from the memory, could be removed with a better memory model



Accuracy and Exploitability (2/2)
Leakages found but not observed
> 8-bit transition in a GPR, not observable
> 8-bit transition on Bus B, not observable
> Stall cycle from the memory, could be removed with a better memory model
Leveraging ARMISTICE output
> Addition of carefully designed instructions to clean the part of the data path involved in the leaking
transition
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Conclusion and Future Work

ARMISTICE
> A framework for formally proving the absence of secret leakage in a masked code
> Based on the micro-architectural details of a Arm Cortex-M3 core and a memory model
> Model close to reality, good match between found leakages and observed leakages

> Locates secret leakages in time and space along with the corresponding expressions, which in turn can
help remove them

Future work

> Avoid the manual generation of the micro-architecture model
= Automate the verification from a RTL description, a binary code and information on shares (secrets
and masks) and sources of randoms

> Consider glitches

= Noé Amiot, current PhD on this topic at LIP6, stay tuned!



Thank you

and many thanks to Quentin Meunier*, Noé Amiot* and Simon Tollec ® for their slides!
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