
On the modelling of the
processor microarchitecture for
masked software verification

Karine HEYDEMANN,
Thales/Sorbonne University

1 / 29

Journées du GDR Sécurité Informatique, 24th June 2025

1. Background on Side-Channel Attacks

2. Masked Implementation Verification

3. Microarchitecture modelling for masked software
verification

2 / 29

Plan

EM
emission

Power
consumption

Time

3 / 29

Introduction: Side-Channel Attacks

The power consumption of a CPU-based device differs with the executed instructions

Example of a naive fast exponentiation

0 200 400 600 800 1000 1200

−0.2

−0.1

0

0.1

0.2

Typical exploitation example: Simple Power Analysis (SPA) [Mangard et al., 2010] 1

1. also used for synchronizing a fault injection

4 / 29

Power Consumption of Instructions

The power consumption of a CPU-based device differs with the executed instructions

Example of a naive fast exponentiation

0 200 400 600 800 1000 1200

−0.2

−0.1

0

0.1

0.2

Square
Multiply

Typical exploitation example: Simple Power Analysis (SPA) [Mangard et al., 2010] 1

1. also used for synchronizing a fault injection

4 / 29

Power Consumption of Instructions

The power consumption of a CPU-based device differs with the executed instructions

Example of a naive fast exponentiation

1 1 100001

0 200 400 600 800 1000 1200

−0.2

−0.1

0

0.1

0.2

Square
Multiply

1 1 0

Typical exploitation example: Simple Power Analysis (SPA) [Mangard et al., 2010] 1

1. also used for synchronizing a fault injection

4 / 29

Power Consumption of Instructions

The power consumption of a CPU-based device differs with the executed instructions

Example of a naive fast exponentiation

1 1 100001

0 200 400 600 800 1000 1200

−0.2

−0.1

0

0.1

0.2

Square
Multiply

1 1 0

Typical exploitation example: Simple Power Analysis (SPA) [Mangard et al., 2010] 1

1. also used for synchronizing a fault injection

4 / 29

Power Consumption of Instructions

The power comsumption of an instruction depends on its data
Simple leakage model: Hamming Weight of data

DPA Book [Mangard et al., 2010] extract

Simple but works in practice !
Typical exploitation examples: Differential Power Analysis [Kocher et al., 1999] and Correlation Power
Analysis [Brier et al., 2004]

5 / 29

Power Consumption of Data

The power comsumption of an instruction depends on its data
Simple leakage model: Hamming Weight of data

DPA Book [Mangard et al., 2010] extract

Simple but works in practice !
Typical exploitation examples: Differential Power Analysis [Kocher et al., 1999] and Correlation Power
Analysis [Brier et al., 2004]

5 / 29

Power Consumption of Data

Hiding

Add noise to reduce the signal to noise ratio

Examples: dummy instruction, instruction or loop shuffling, semantic variants (function or instruction)

Does not remove leakage but makes it harder to exploit (more traces are needed)

Masking

Make the manipulated data statistically independent from the secret values

Can be formally proven

Power measurements are theoretically independent of the secret

6 / 29

Counter-measure Against SCA

At order d
Split a secret s into d + 1 parts (a.k.a shares) s0, s1,..., sd such than s = s0 ? s1 ? ... ? sd

s0, ..., sd−1 are d uniform randoms (a.k.a “masks”)

sd = s ? s0 ? s1 ? ... ? sd1

Any combination of less than d shares is statistically independant from the secret

First-order boolean masking:

s0 is a uniform random

s1 = s0 ⊕ s

7 / 29

Masking

Consider 2 boolean shared values a = (a0, a1) and b = (b0,b1) at order 1

How to securely compute c, also shared, such that c = a.b?

We want c0 and c1 such that c0 ⊕ c1 = (a0 ⊕ a1).(b0 ⊕ b1) without computing a and b

NB: c0 ⊕ c1 = (a0 ⊕ a1).(b0 ⊕ b1)
= (a0.b0 ⊕ a0.b1 ⊕ a1.b0 ⊕ a1.b1)

⇒ need to compute all the products (.) and reduce the computation (+)

⇒ any reduction of two terms leads to a leakage of a or b

e.g c0 = a0.b0 ⊕ a0.b1, c1 = a1.b0 ⊕ a1.b1 leaks b

e.g c0 = a0.b0 ⊕ a1.b1, c1 = a1.b0 ⊕ a0.b1 leaks a and b

⇒ additionnal randoms are necessary to make the computation secure

Different masking schemes have been proposed ISW-AND [Ishai et al., 2003],
DOM-AND [Gross et al., 2016], TI-AND [Nikova et al., 2006]

8 / 29

Masking of a "AND" Operation

Consider 2 boolean shared values a = (a0, a1) and b = (b0,b1) at order 1

How to securely compute c, also shared, such that c = a.b?

We want c0 and c1 such that c0 ⊕ c1 = (a0 ⊕ a1).(b0 ⊕ b1) without computing a and b

NB: c0 ⊕ c1 = (a0 ⊕ a1).(b0 ⊕ b1)
= (a0.b0 ⊕ a0.b1 ⊕ a1.b0 ⊕ a1.b1)

⇒ need to compute all the products (.) and reduce the computation (+)

⇒ any reduction of two terms leads to a leakage of a or b

e.g c0 = a0.b0 ⊕ a0.b1, c1 = a1.b0 ⊕ a1.b1 leaks b

e.g c0 = a0.b0 ⊕ a1.b1, c1 = a1.b0 ⊕ a0.b1 leaks a and b

⇒ additionnal randoms are necessary to make the computation secure

Different masking schemes have been proposed ISW-AND [Ishai et al., 2003],
DOM-AND [Gross et al., 2016], TI-AND [Nikova et al., 2006]

8 / 29

Masking of a "AND" Operation

Consider 2 boolean shared values a = (a0, a1) and b = (b0,b1) at order 1

How to securely compute c, also shared, such that c = a.b?

We want c0 and c1 such that c0 ⊕ c1 = (a0 ⊕ a1).(b0 ⊕ b1) without computing a and b

NB: c0 ⊕ c1 = (a0 ⊕ a1).(b0 ⊕ b1)
= (a0.b0 ⊕ a0.b1 ⊕ a1.b0 ⊕ a1.b1)

⇒ need to compute all the products (.) and reduce the computation (+)

⇒ any reduction of two terms leads to a leakage of a or b

e.g c0 = a0.b0 ⊕ a0.b1, c1 = a1.b0 ⊕ a1.b1 leaks b

e.g c0 = a0.b0 ⊕ a1.b1, c1 = a1.b0 ⊕ a0.b1 leaks a and b

⇒ additionnal randoms are necessary to make the computation secure

Different masking schemes have been proposed ISW-AND [Ishai et al., 2003],
DOM-AND [Gross et al., 2016], TI-AND [Nikova et al., 2006]

8 / 29

Masking of a "AND" Operation

Consider 2 boolean shared values a = (a0, a1) and b = (b0,b1) at order 1

How to securely compute c, also shared, such that c = a.b?

We want c0 and c1 such that c0 ⊕ c1 = (a0 ⊕ a1).(b0 ⊕ b1) without computing a and b

NB: c0 ⊕ c1 = (a0 ⊕ a1).(b0 ⊕ b1)
= (a0.b0 ⊕ a0.b1 ⊕ a1.b0 ⊕ a1.b1)

⇒ need to compute all the products (.) and reduce the computation (+)

⇒ any reduction of two terms leads to a leakage of a or b

e.g c0 = a0.b0 ⊕ a0.b1, c1 = a1.b0 ⊕ a1.b1 leaks b

e.g c0 = a0.b0 ⊕ a1.b1, c1 = a1.b0 ⊕ a0.b1 leaks a and b

⇒ additionnal randoms are necessary to make the computation secure

Different masking schemes have been proposed ISW-AND [Ishai et al., 2003],
DOM-AND [Gross et al., 2016], TI-AND [Nikova et al., 2006]

8 / 29

Masking of a "AND" Operation

Consider 2 boolean shared values a = (a0, a1) and b = (b0,b1) at order 1

How to securely compute c, also shared, such that c = a.b?

We want c0 and c1 such that c0 ⊕ c1 = (a0 ⊕ a1).(b0 ⊕ b1) without computing a and b

NB: c0 ⊕ c1 = (a0 ⊕ a1).(b0 ⊕ b1)
= (a0.b0 ⊕ a0.b1 ⊕ a1.b0 ⊕ a1.b1)

⇒ need to compute all the products (.) and reduce the computation (+)

⇒ any reduction of two terms leads to a leakage of a or b

e.g c0 = a0.b0 ⊕ a0.b1, c1 = a1.b0 ⊕ a1.b1 leaks b

e.g c0 = a0.b0 ⊕ a1.b1, c1 = a1.b0 ⊕ a0.b1 leaks a and b

⇒ additionnal randoms are necessary to make the computation secure

Different masking schemes have been proposed ISW-AND [Ishai et al., 2003],
DOM-AND [Gross et al., 2016], TI-AND [Nikova et al., 2006]

8 / 29

Masking of a "AND" Operation

Consider 2 boolean shared values a = (a0, a1) and b = (b0,b1) at order 1

How to securely compute c, also shared, such that c = a.b?

We want c0 and c1 such that c0 ⊕ c1 = (a0 ⊕ a1).(b0 ⊕ b1) without computing a and b

NB: c0 ⊕ c1 = (a0 ⊕ a1).(b0 ⊕ b1)
= (a0.b0 ⊕ a0.b1 ⊕ a1.b0 ⊕ a1.b1)

⇒ need to compute all the products (.) and reduce the computation (+)

⇒ any reduction of two terms leads to a leakage of a or b

e.g c0 = a0.b0 ⊕ a0.b1, c1 = a1.b0 ⊕ a1.b1 leaks b

e.g c0 = a0.b0 ⊕ a1.b1, c1 = a1.b0 ⊕ a0.b1 leaks a and b

⇒ additionnal randoms are necessary to make the computation secure

Different masking schemes have been proposed ISW-AND [Ishai et al., 2003],
DOM-AND [Gross et al., 2016], TI-AND [Nikova et al., 2006]

8 / 29

Masking of a "AND" Operation

Consider 2 boolean shared values a = (a0, a1) and b = (b0,b1) at order 1

How to securely compute c, also shared, such that c = a.b?

We want c0 and c1 such that c0 ⊕ c1 = (a0 ⊕ a1).(b0 ⊕ b1) without computing a and b

NB: c0 ⊕ c1 = (a0 ⊕ a1).(b0 ⊕ b1)
= (a0.b0 ⊕ a0.b1 ⊕ a1.b0 ⊕ a1.b1)

⇒ need to compute all the products (.) and reduce the computation (+)

⇒ any reduction of two terms leads to a leakage of a or b

e.g c0 = a0.b0 ⊕ a0.b1, c1 = a1.b0 ⊕ a1.b1 leaks b

e.g c0 = a0.b0 ⊕ a1.b1, c1 = a1.b0 ⊕ a0.b1 leaks a and b

⇒ additionnal randoms are necessary to make the computation secure

Different masking schemes have been proposed ISW-AND [Ishai et al., 2003],
DOM-AND [Gross et al., 2016], TI-AND [Nikova et al., 2006]

8 / 29

Masking of a "AND" Operation

Consider 2 boolean shared values a = (a0, a1) and b = (b0,b1) at order 1

How to securely compute c, also shared, such that c = a.b?

We want c0 and c1 such that c0 ⊕ c1 = (a0 ⊕ a1).(b0 ⊕ b1) without computing a and b

NB: c0 ⊕ c1 = (a0 ⊕ a1).(b0 ⊕ b1)
= (a0.b0 ⊕ a0.b1 ⊕ a1.b0 ⊕ a1.b1)

⇒ need to compute all the products (.) and reduce the computation (+)

⇒ any reduction of two terms leads to a leakage of a or b

e.g c0 = a0.b0 ⊕ a0.b1, c1 = a1.b0 ⊕ a1.b1 leaks b

e.g c0 = a0.b0 ⊕ a1.b1, c1 = a1.b0 ⊕ a0.b1 leaks a and b

⇒ additionnal randoms are necessary to make the computation secure

Different masking schemes have been proposed ISW-AND [Ishai et al., 2003],
DOM-AND [Gross et al., 2016], TI-AND [Nikova et al., 2006]

8 / 29

Masking of a "AND" Operation

Consider 2 boolean shared values a = (a0, a1) and b = (b0,b1) at order 1

How to securely compute c, also shared, such that c = a.b?

We want c0 and c1 such that c0 ⊕ c1 = (a0 ⊕ a1).(b0 ⊕ b1) without computing a and b

NB: c0 ⊕ c1 = (a0 ⊕ a1).(b0 ⊕ b1)
= (a0.b0 ⊕ a0.b1 ⊕ a1.b0 ⊕ a1.b1)

⇒ need to compute all the products (.) and reduce the computation (+)

⇒ any reduction of two terms leads to a leakage of a or b

e.g c0 = a0.b0 ⊕ a0.b1, c1 = a1.b0 ⊕ a1.b1 leaks b

e.g c0 = a0.b0 ⊕ a1.b1, c1 = a1.b0 ⊕ a0.b1 leaks a and b

⇒ additionnal randoms are necessary to make the computation secure

Different masking schemes have been proposed ISW-AND [Ishai et al., 2003],
DOM-AND [Gross et al., 2016], TI-AND [Nikova et al., 2006]

8 / 29

Masking of a "AND" Operation

a0

b0

b1

a1

rnd

c1

c0

b1

a1

b0

a0

a1.b1

a0.b0

a0.b1

a1.b0

a1.b0⊕rnd

a0.b1⊕rnd

a0.b1⊕rnd⊕a1.b1

a1.b0⊕rnd⊕a0.b0

1 void masked_and(uint8_t a0, uint8_t a1,
2 uint8_t b0, uint8_t b1,
3 uint8_t rnd,
4 uint8_t *c0, uint8_t *c1)
5

6 *c0 = ((a0 & b0) ^ rnd) ^ (a1 & b1);
7 *c1 = ((a0 & b1) ^ rnd) ^ (a1 & b0);
8 return;

9 / 29

Example: Masked AND at Order 1

a0

b0

b1

a1

rnd

c1

c0

b1

a1

b0

a0

a1.b1

a0.b0

a0.b1

a1.b0

a1.b0⊕rnd

a0.b1⊕rnd

a0.b1⊕rnd⊕a1.b1

a1.b0⊕rnd⊕a0.b0

1 void masked_and(uint8_t a0, uint8_t a1,
2 uint8_t b0, uint8_t b1,
3 uint8_t r,
4 uint8_t *c0, uint8_t *c1)
5 {
6 uint8_t tmp = (a0 & b1) ^ r;
7 __asm__ __volatile__ ("" ::: "memory");
8 *c0 = tmp ^ (a1 & b0);
9 tmp = (a0 & b0) ^ r;

10 __asm__ __volatile__ ("" ::: "memory");
11 *c1 = tmp ^ (a1 & b1);
12 return;
13 }

10 / 29

Example: Masked AND at Order 1

a0

b0

b1

a1

rnd

c1

c0

b1

a1

b0

a0

a1.b1

a0.b0

a0.b1

a1.b0

a1.b0⊕rnd

a0.b1⊕rnd

a0.b1⊕rnd⊕a1.b1

a1.b0⊕rnd⊕a0.b0

1 ;r0:a0, r1:b0, r2:a1, r3:b1, r6:c[] r7:r
2

3 and.w r4, r0, r3 ; a0 & b1
4 eors r4, r7 ; t0 = (a0 & b1) ^ r
5 and.w r5, r2, r1 ; a1 & b0
6 ands r0, r1 ; a0 & b0
7 ands r3, r2 ; b1 & a1
8 eors r4, r5 ; t1 = t0 ^ (a1 & b0)
9 eors r0, r7 ; c0 = (a0 & b0) ^ r

10 eors r4, r3 ; c1 = t1 ^ (a1 & b1)
11 str r0, [r6, #0]
12 str r4, [r6, #4]

11 / 29

Example: Masked AND at Order 1

1. Background on Side-Channel Attacks

2. Masked Implementation Verification

3. Microarchitecture modelling for masked software
verification

12 / 29

Plan

Empirically
Perform power simulations or acquisitions then use statistical metrics, such as the t-test

int c = a & 0x8

eor r4,r4,r6;
Power Model

/
Measurement

Masked Implementation Power Traces
Statistical
 Analysis

Pros : Complex circuits/software analysis

Cons : No guarantee, leakages are difficult to
locate

MAPS [Corre et al., 2018],
PROLEAD [Müller and Moradi, 2022],
ELMO [McCann et al., 2017] or
ROSITA [Shelton et al., 2021]

13 / 29

How To Verify a Masked Implementation?

Empirically
Perform power simulations or acquisitions then use statistical metrics, such as the t-test

int c = a & 0x8

eor r4,r4,r6;
Power Model

/
Measurement

Masked Implementation Power Traces
Statistical
 Analysis

Pros : Complex circuits/software analysis

Cons : No guarantee, leakages are difficult to
locate

MAPS [Corre et al., 2018],
PROLEAD [Müller and Moradi, 2022],
ELMO [McCann et al., 2017] or
ROSITA [Shelton et al., 2021]

13 / 29

How To Verify a Masked Implementation?

Formally
Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d -probing model [Ishai et al., 2003]
The attacker has d probes that can capture d intermediate values during the execution
Assume a value leakage model

Example with a method based on symbolic expression

14 / 29

How To Verify a Masked Implementation?

Formally
Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d -probing model [Ishai et al., 2003]
The attacker has d probes that can capture d intermediate values during the execution
Assume a value leakage model

Example with a method based on symbolic expression

 tmp = (a0 & b1) ^ rnd;

 *c0 = tmp ^ (a1 & b0);

 tmp = (a0 & b0) ^ rnd;

 *c1 = tmp ^ (a1 & b1);

Masked Implementation

14 / 29

How To Verify a Masked Implementation?

Formally
Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d -probing model [Ishai et al., 2003]
The attacker has d probes that can capture d intermediate values during the execution
Assume a value leakage model

Example with a method based on symbolic expression
Masked Implementation

-a0 & b1

Expression List

Prover

 tmp = (a0 & b1) ^ rnd;

 *c0 = tmp ^ (a1 & b0);

 tmp = (a0 & b0) ^ rnd;

 *c1 = tmp ^ (a1 & b1);

14 / 29

How To Verify a Masked Implementation?

Formally
Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d -probing model [Ishai et al., 2003]
The attacker has d probes that can capture d intermediate values during the execution
Assume a value leakage model

Example with a method based on symbolic expression
Masked Implementation

-a0 & b1
-(a0 & b1) ^ rnd)

Expression List

Prover

 tmp = (a0 & b1) ^ rnd;

 *c0 = tmp ^ (a1 & b0);

 tmp = (a0 & b0) ^ rnd;

 *c1 = tmp ^ (a1 & b1);

14 / 29

How To Verify a Masked Implementation?

Formally
Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d -probing model [Ishai et al., 2003]
The attacker has d probes that can capture d intermediate values during the execution
Assume a value leakage model

Example with a method based on symbolic expression
Masked Implementation

-a0 & b1
-(a0 & b1) ^ rnd)
- a1 & b0

Expression List

Prover

 tmp = (a0 & b1) ^ rnd;

 *c0 = tmp ^ (a1 & b0);

 tmp = (a0 & b0) ^ rnd;

 *c1 = tmp ^ (a1 & b1);

14 / 29

How To Verify a Masked Implementation?

Formally
Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d -probing model [Ishai et al., 2003]
The attacker has d probes that can capture d intermediate values during the execution
Assume a value leakage model

Example with a method based on symbolic expression
Masked Implementation

-a0 & b1
-(a0 & b1) ^ rnd)
- a1 & b0
-(a0 & b1) ^ rnd
 ^ (a1 & b0)

Expression List

Prover

 tmp = (a0 & b1) ^ rnd;

 *c0 = tmp ^ (a1 & b0);

 tmp = (a0 & b0) ^ rnd;

 *c1 = tmp ^ (a1 & b1);

14 / 29

How To Verify a Masked Implementation?

Formally
Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d -probing model [Ishai et al., 2003]
The attacker has d probes that can capture d intermediate values during the execution
Assume a value leakage model

Example with a method based on symbolic expression
Masked Implementation

-a0 & b1
-(a0 & b1) ^ rnd)
- a1 & b0
-(a0 & b1) ^ rnd
 ^ (a1 & b0)
-a0 & b0
-(a0 & b0) ^rnd
-a1 & b1
-(a0 & b0) ^rnd
 ^(a1 & b1)

Expression List

Prover

 tmp = (a0 & b1) ^ rnd;

 *c0 = tmp ^ (a1 & b0);

 tmp = (a0 & b0) ^ rnd;

 *c1 = tmp ^ (a1 & b1);

14 / 29

How To Verify a Masked Implementation?

Formally
Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d -probing model [Ishai et al., 2003]
The attacker has d probes that can capture d intermediate values during the execution
Assume a value leakage model

Example with a method based on symbolic expression

Pros: Absence of secret leakage is guaranteed for the chosen model, easier to locate and undestand
leakages

Cons: Scalability issues, potential false positive,
proven-secure implementations in the d-probing model can leak
MaskVerif [Barthe et al., 2019], ARISTI [Ben El Ouahma et al., 2019],
LeakageVerif [Meunier et al., 2023], VerifMSI [Meunier and Taleb, 2023]

14 / 29

How To Verify a Masked Implementation?

Formally
Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d -probing model with transition
The attacker has d probes that can capture transitions during the execution
Assume a transition leakage model

Example with a method based on symbolic expression

Perform verification at the assembly level to detect vulnerabilities post-compilation

15 / 29

How To Verify a Masked Implementation?

Formally
Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d -probing model with transition
The attacker has d probes that can capture transitions during the execution
Assume a transition leakage model

Example with a method based on symbolic expression
Expression List

Prover

 tmp = (a0 & b1) ^ rnd;

 *c0 = tmp ^ (a1 & b0);

 tmp = (a0 & b0) ^ rnd;

 *c1 = tmp ^ (a1 & b1);

Masked Implementation

Perform verification at the assembly level to detect vulnerabilities post-compilation

15 / 29

How To Verify a Masked Implementation?

Formally
Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d -probing model with transition
The attacker has d probes that can capture transitions during the execution
Assume a transition leakage model

Example with a method based on symbolic expression

-(a0 & b1) ^ rnd
 ^
 (a0 & b0) ^ rnd

Expression List

Prover

x
 tmp = (a0 & b1) ^ rnd;

 *c0 = tmp ^ (a1 & b0);

 tmp = (a0 & b0) ^ rnd;

 *c1 = tmp ^ (a1 & b1);

Masked Implementation

Perform verification at the assembly level to detect vulnerabilities post-compilation

15 / 29

How To Verify a Masked Implementation?

Formally
Label input values as secret, mask or public, and prove the absence of leakage for a chosen attacker
model and a leakage model

d -probing model with transition
The attacker has d probes that can capture transitions during the execution
Assume a transition leakage model

Example with a method based on symbolic expression

-(a0 & b1) ^ rnd
 ^
 (a0 & b0) ^ rnd

Expression List

Prover

x
 tmp = (a0 & b1) ^ rnd;

 *c0 = tmp ^ (a1 & b0);

 tmp = (a0 & b0) ^ rnd;

 *c1 = tmp ^ (a1 & b1);

Masked Implementation

Perform verification at the assembly level to detect vulnerabilities post-compilation

15 / 29

How To Verify a Masked Implementation?

Software “ISW And” proven leakage-free at the ISA level in the value leakage model and transition
leakage model (GPRs).

1 ;r0:a0, r1:b0, r2:a1, r3:b1, r6:c[] r7:m
2 and.w r4, r0, r3 ; a0 & b1
3 eors r4, r7 ; t0 = (a0 & b1) ^ m
4 and.w r5, r2, r1 ; a1 & b0
5 ands r0, r1 ; a0 & b0
6 ands r3, r2 ; b1 & a1
7 eors r4, r5 ; t1 = t0 ^ (a1 & b0)
8 eors r0, r7 ; c0 = (a0 & b0) ^ m
9 eors r4, r3 ; c1 = t1 ^ (a1 & b1)

10 str r0, [r6, #0]
11 str r4, [r6, #4]
12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

80 90 100 110 120 130 140

C
or

re
la

tio
n

(5
00

00
 tr

a
ce

s)

Time (sample)

a = a0 ^ a1
b = b0 ^ b1
c = c0 ^ c1

Need for modelling leakage happening in the circuit at the micro-architectural level while software is
executed to capture leakage that can not be modeled at ISA level

16 / 29

Proven Leakage-Free Implementation in Practice

Software “ISW And” proven leakage-free at the ISA level in the value leakage model and transition
leakage model (GPRs).

1 ;r0:a0, r1:b0, r2:a1, r3:b1, r6:c[] r7:m
2 and.w r4, r0, r3 ; a0 & b1
3 eors r4, r7 ; t0 = (a0 & b1) ^ m
4 and.w r5, r2, r1 ; a1 & b0
5 ands r0, r1 ; a0 & b0
6 ands r3, r2 ; b1 & a1
7 eors r4, r5 ; t1 = t0 ^ (a1 & b0)
8 eors r0, r7 ; c0 = (a0 & b0) ^ m
9 eors r4, r3 ; c1 = t1 ^ (a1 & b1)

10 str r0, [r6, #0]
11 str r4, [r6, #4]
12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

80 90 100 110 120 130 140

C
or

re
la

tio
n

(5
00

00
 tr

a
ce

s)

Time (sample)

a = a0 ^ a1
b = b0 ^ b1
c = c0 ^ c1

Need for modelling leakage happening in the circuit at the micro-architectural level while software is
executed to capture leakage that can not be modeled at ISA level

16 / 29

Proven Leakage-Free Implementation in Practice

Software “ISW And” proven leakage-free at the ISA level in the value leakage model and transition
leakage model (GPRs).

1 ;r0:a0, r1:b0, r2:a1, r3:b1, r6:c[] r7:m
2 and.w r4, r0, r3 ; a0 & b1
3 eors r4, r7 ; t0 = (a0 & b1) ^ m
4 and.w r5, r2, r1 ; a1 & b0
5 ands r0, r1 ; a0 & b0
6 ands r3, r2 ; b1 & a1
7 eors r4, r5 ; t1 = t0 ^ (a1 & b0)
8 eors r0, r7 ; c0 = (a0 & b0) ^ m
9 eors r4, r3 ; c1 = t1 ^ (a1 & b1)

10 str r0, [r6, #0]
11 str r4, [r6, #4]
12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

80 90 100 110 120 130 140

C
or

re
la

tio
n

(5
00

00
 tr

a
ce

s)

Time (sample)

a = a0 ^ a1
b = b0 ^ b1
c = c0 ^ c1

Need for modelling leakage happening in the circuit at the micro-architectural level while software is
executed to capture leakage that can not be modeled at ISA level

16 / 29

Proven Leakage-Free Implementation in Practice

1. Background on Side-Channel Attacks

2. Masked Implementation Verification

3. Microarchitecture modelling for masked software
verification

17 / 29

Plan

ARMISTICE: Micro-Architectural Leakage Modelling for Masked
Software Formal Verification

Arnaud de Grandmaison 2, Karine Heydemann, Quentin L. Meunier 3

published in IEEE Transaction Computer-Aided Design 2022 and presented at the conference
CASES 2022

2. Arm
3. Sorbonne Université/LIP6

18 / 29

Arm Cortex-M3: modeled from the Verilog
source code

Memoire: black-box approach (no HDL
description available)

Design of several micro-benchmarks a.k.a.
“leakage test vectors”:

Detection of leakage sources
(black-box)
Validation (white-box)
Ranking

Memory

Addr

CPU.DataIn

ReadWriteBuffer

AddrBuffer

CPU.DataOut

19 / 29

Case Study: Board STM32F1 [De Grandmaison et al., 2022]

Arm Cortex-M3: modeled from the Verilog
source code

Memoire: black-box approach (no HDL
description available)

Design of several micro-benchmarks a.k.a.
“leakage test vectors”:

Detection of leakage sources
(black-box)
Validation (white-box)
Ranking

Memory

Addr

CPU.DataIn

ReadWriteBuffer

AddrBuffer

CPU.DataOut

BS

+

+

RegFile

MuxA

MuxB

MuxRegA

MuxRegB

MuxRegAddr1

MuxRegAddr2

RegA

RegB

RegImm

RegAddr1

RegAddr2

Addr Adder

Data Adder

MuxBS

ALUOut

BusD

DataReg
MuxDataReg

MuxDataWrite

MuxDataAdder#imm / sh

#imm

<<

sh

Addr DataOut DataIn

E
xt

ra
ct

io
n

Fo
rm

a
tt

in
g

Port D

Port A

Port B

ALU

LSU

AGU

19 / 29

Case Study: Board STM32F1 [De Grandmaison et al., 2022]

Arm Cortex-M3: modeled from the Verilog
source code

Memoire: black-box approach (no HDL
description available)

Design of several micro-benchmarks a.k.a.
“leakage test vectors”:

Detection of leakage sources
(black-box)
Validation (white-box)
Ranking

Memory

Addr

CPU.DataIn

ReadWriteBuffer

AddrBuffer

CPU.DataOut

BS

+

+

RegFile

MuxA

MuxB

MuxRegA

MuxRegB

MuxRegAddr1

MuxRegAddr2

RegA

RegB

RegImm

RegAddr1

RegAddr2

Addr Adder

Data Adder

MuxBS

ALUOut

BusD

DataReg
MuxDataReg

MuxDataWrite

MuxDataAdder#imm / sh

#imm

<<

sh

Addr DataOut DataIn

E
xt

ra
ct

io
n

Fo
rm

a
tt

in
g

Port D

Port A

Port B

ALU

LSU

AGU

19 / 29

Case Study: Board STM32F1 [De Grandmaison et al., 2022]

Arm Cortex-M3: modeled from the Verilog
source code

Memoire: black-box approach (no HDL
description available)

Design of several micro-benchmarks a.k.a.
“leakage test vectors”:

Detection of leakage sources
(black-box)

Validation (white-box)
Ranking

Memory

Addr

CPU.DataIn

ReadWriteBuffer

AddrBuffer

CPU.DataOut

BS

+

+

RegFile

MuxA

MuxB

MuxRegA

MuxRegB

MuxRegAddr1

MuxRegAddr2

RegA

RegB

RegImm

RegAddr1

RegAddr2

Addr Adder

Data Adder

MuxBS

ALUOut

BusD

DataReg
MuxDataReg

MuxDataWrite

MuxDataAdder#imm / sh

#imm

<<

sh

Addr DataOut DataIn

E
xt

ra
ct

io
n

Fo
rm

a
tt

in
g

Port D

Port A

Port B

ALU

LSU

AGU

19 / 29

Case Study: Board STM32F1 [De Grandmaison et al., 2022]

Arm Cortex-M3: modeled from the Verilog
source code

Memoire: black-box approach (no HDL
description available)

Design of several micro-benchmarks a.k.a.
“leakage test vectors”:

Detection of leakage sources
(black-box)

Validation (white-box)
Ranking

Memory

Addr

CPU.DataIn

ReadWriteBuffer

AddrBuffer

CPU.DataOut

BS

+

+

RegFile

MuxA

MuxB

MuxRegA

MuxRegB

MuxRegAddr1

MuxRegAddr2

RegA

RegB

RegImm

RegAddr1

RegAddr2

Addr Adder

Data Adder

MuxBS

ALUOut

BusD

DataReg
MuxDataReg

MuxDataWrite

MuxDataAdder#imm / sh

#imm

<<

sh

Addr DataOut DataIn

E
xt

ra
ct

io
n

Fo
rm

a
tt

in
g

Port D

Port A

Port B

ALU

LSU

AGU

19 / 29

Case Study: Board STM32F1 [De Grandmaison et al., 2022]

Arm Cortex-M3: modeled from the Verilog
source code

Memoire: black-box approach (no HDL
description available)

Design of several micro-benchmarks a.k.a.
“leakage test vectors”:

Detection of leakage sources
(black-box)
Validation (white-box)

Ranking

Memory

Addr

CPU.DataIn

ReadWriteBuffer

AddrBuffer

CPU.DataOut

BS

+

+

RegFile

MuxA

MuxB

MuxRegA

MuxRegB

MuxRegAddr1

MuxRegAddr2

RegA

RegB

RegImm

RegAddr1

RegAddr2

Addr Adder

Data Adder

MuxBS

ALUOut

BusD

DataReg
MuxDataReg

MuxDataWrite

MuxDataAdder#imm / sh

#imm

<<

sh

Addr DataOut DataIn

E
xt

ra
ct

io
n

Fo
rm

a
tt

in
g

Port D

Port A

Port B

ALU

LSU

AGU

19 / 29

Case Study: Board STM32F1 [De Grandmaison et al., 2022]

Arm Cortex-M3: modeled from the Verilog
source code

Memoire: black-box approach (no HDL
description available)

Design of several micro-benchmarks a.k.a.
“leakage test vectors”:

Detection of leakage sources
(black-box)
Validation (white-box)
Ranking

Memory

Addr

CPU.DataIn

ReadWriteBuffer

AddrBuffer

CPU.DataOut

BS

+

+

RegFile

MuxA

MuxB

MuxRegA

MuxRegB

MuxRegAddr1

MuxRegAddr2

RegA

RegB

RegImm

RegAddr1

RegAddr2

Addr Adder

Data Adder

MuxBS

ALUOut

BusD

DataReg
MuxDataReg

MuxDataWrite

MuxDataAdder#imm / sh

#imm

<<

sh

Addr DataOut DataIn

E
xt

ra
ct

io
n

Fo
rm

a
tt

in
g

Port D

Port A

Port B

ALU

LSU

AGU

19 / 29

Case Study: Board STM32F1 [De Grandmaison et al., 2022]

77 carefully designed test vectors

31 for the data path components
involved in each instruction

5 for forwarding mechanisms

7 for the writing back into the
register file

34 for analysis of the LSU and the
modelling of the memory.

Description and results online: https:
//www-soc.lip6.fr/armistice

Leakage test vectors overview
Vector Archs Targets Tags Description

SeqAND.EOR.1 v6m, v7m stm32f1 ALU, AND, DEC, EOR Designed for testing leakage between non identical ALU instructions
SeqAND.EOR.2 v6m, v7m stm32f1 ALU, AND, DEC, EOR Designed for testing leakage between non identical ALU instructions
SeqEOR.ADD.1 v7m stm32f1 ADD, ALU, DEC, ENC, IMM Designed for testing leakage when executing a 32bit ADD with immediate instruction
SeqEOR.ADD.2 v7m stm32f1 ADD, ALU, DEC, ENC, IMM Designed for testing leakage when executing a 16bit ADD with immediate instruction
SeqEOR.ADD.3 v7m stm32f1 ADD, ALU, DEC, ENC, IMM Designed for testing leakage when execution a 16bit ADD with immediate instruction
SeqEOR.ADD.4 v7m stm32f1 ADD, ALU Designed for testing leakage when executing an ADD instruction
SeqEOR.AND.1 v6m, v7m stm32f1 ALU, AND, DEC, EOR Designed for testing leakage between non identical ALU instructions
SeqEOR.AND.2 v6m, v7m stm32f1 ALU, AND, DEC, EOR Designed for testing leakage between non identical ALU instructions
SeqEOR.EOR.1 v6m, v7m stm32f1 ALU, DEC, EOR, PRE/POSTAMBLE Designed for testing leakage when executing an EOR instruction
SeqEOR.EOR.2 v6m, v7m stm32f1 ALU, DEC, EOR, PRE/POSTAMBLE Designed for testing leakage when executing an EOR instruction
SeqEOR.EOR.3 v6m, v7m stm32f1 ALU, DEC, EOR, PRE/POSTAMBLE Designed for testing leakage when execution an EOR instruction
SeqEOR.EOR.4 v6m, v7m stm32f1 ALU, DEC, EOR Designed for testing leakage between non consecutive EOR instructions
SeqEOR.EOR.5 v7m stm32f1 ALU, DEC, EOR, IMM Designed for testing leakage when executing a XOR instruction with an immediate operand
SeqEOR.Imm.Imm v6m, v7m stm32f1 ADD, ALU, CMP, DEC, EOR, IMM Designed for testing leakage between consecutive data read in RegFile in case of immediate in the decoded 32 bits instruction
SeqEOR.Imm.Imm.1 v6m, v7m stm32f1 ADD, ALU, CMP, DEC, EOR, IMM Designed for testing leakage between consecutive data read in RegFile in case of immediate in the decoded 32 bits instruction
SeqEOR.Imm.Imm.2 v6m, v7m stm32f1 ADD, ALU, CMP, DEC, EOR, IMM Designed for testing leakage between consecutive data read in RegFile in case of immediate in the decoded 32 bits instruction
SeqEOR.Imm.Imm.3 v6m, v7m stm32f1 ADD, ALU, CMP, DEC, EOR, IMM Designed for testing leakage between consecutive data read in RegFile in case of immediate in the decoded 32 bits instruction
SeqEOR.LD.1 v6m, v7m stm32f1 DEC, ENC, LD Designed for testing leakage related to 16-bit encoding of ldr
SeqEOR.LD.2 v6m, v7m stm32f1 DEC, ENC, LD Designed for testing leakage related to 32-bit encoding of ldr
SeqEOR.LSL.1 v6m, v7m stm32f1 ALU, DEC, ENC, LSL Designed for testing leakage when executing a shift by an immediate instruction (LSL)
SeqEOR.LSL.2 v6m, v7m stm32f1 ALU, DEC, ENC, LSL Designed for testing leakage when executing a shift by an immediate instruction (LSL)
SeqEOR.LSL.3 v6m, v7m stm32f1 ALU, DEC, ENC, LSL Designed for testing leakage when executing a shift by an immediate instruction (LSL)
SeqEOR.LSL.4 v6m, v7m stm32f1 ALU, DEC, ENC, LSL Designed for testing leakage when executing a shift by an immediate instruction (LSL)
SeqEOR.MOV.1 v7m stm32f1 ALU, DEC, ENC, IMM, MOV Designed for testing leakage when executing a 32bit MOV instruction with an immediate operand
SeqEOR.MOV.2 v7m stm32f1 ALU, DEC, ENC, IMM, MOV Designed for testing leakage when when executing a 16bit MOVS instruction with an immediate operand
SeqEOR.MOV.4 v7m stm32f1 ALU, DEC, ENC, MOV Designed for testing leakage when executing a 32bit MOV register instruction
SeqEOR.MOV.5 v7m stm32f1 ALU, DEC, ENC, MOV Designed for testing leakage when executing a 32bit MOVS register instruction
SeqEOR.MOV.6 v6m, v7m stm32f1 ALU, DEC, ENC, MOV Designed for testing leakage when execution a 16bit MOVS register instruction
SeqEOR.MOV.7 v6m, v7m stm32f1 ALU, DEC, ENC, MOV Designed for testing leakage when execution a 16bit MOV register instruction
SeqEOR.ST.1 v6m, v7m stm32f1 DEC, ST Designed for testing leakage related to a store instruction with an addressing mode using an immediate offset
SeqEOR.ST.2 v6m, v7m stm32f1 DEC, ST Designed for testing leakage related to a store instruction with an addressing mode using a register offset
SeqEOR.movw v6m, v7m stm32f1 ALU, DEC, MOV Designed for testing leakage related to a MOVW instruction
SeqEOR.nop v6m, v7m stm32f1 ALU, DEC, NOP Designed for testing leakage related to a nop instruction
SeqFWD.ALU.1 v7m stm32f1 ALU, EOR, FWD Designed for testing leakage related to the forwarding to an ALU instruction for its first operand a result from an ALU instruction
SeqFWD.ALU.2 v7m stm32f1 ALU, EOR, FWD Designed for testing leakage related to the forwarding to an ALU instruction for its second operand a result from an ALU instruction
SeqFWD.LSU.1 v7m stm32f1 DATA, FWD, LD-ST, MEM Designed for testing leakage related to the forwarding of loaded value to a store instruction with an immediate offset
SeqFWD.LSU.2 v7m stm32f1 DATA, FWD, LD-ST, MEM Designed for testing leakage related to forward of loaded value to a store instruction with a register offset
SeqFWD.LSU.ALU.1 v7m stm32f1 ALU, FWD, MEM Designed for testing leakage related to the forwarding of loaded value to a store instruction with an immediate offset
SeqMEM.ADDR.1 v7m stm32f1 ADDR, MEM Designed for testing leakage in the LSU in case of LDR instruction with a register offset, and related to the address bus
SeqMEM.ADDR.2 v7m stm32f1 ADDR, MEM Designed for testing leakage in the LSU in case of LDR instruction with a register offset, and related to the address bus
SeqMEM.ADDR.3 v7m stm32f1 ADDR, MEM Designed for testing leakage in the LSU in case of LDR instruction with a register offset, and related to the address bus
SeqMEM.LD.1 v7m stm32f1 DATA, LD-LD, MEM Designed for testing leakage related to consecutive and non consecutive loads at fixed word-aligned addresses in RAM
SeqMEM.LD.2 v7m stm32f1 DATA, LD-LD, MEM Designed for testing leakage related to consecutive loads at fixed word-aligned addresses in RAM
SeqMEM.LD.3 v7m stm32f1 DATA, LD-LD, MEM Designed for testing leakage related to consecutive and non consecutive loads (of bytes) at fixed word-aligned addresses in RAM
SeqMEM.LD.4 v7m stm32f1 DATA, LD-LD, MEM Designed for testing leakage related to consecutive loads (of a byte) at fixed word-aligned addresses in RAM
SeqMEM.LD.5 v7m stm32f1 DATA, EXTRACT, LD-LD, MEM Designed for testing leakage related to consecutive loads (of a byte) at fixed (not word-aligned) addresses in RAM
SeqMEM.LD.6 v7m stm32f1 DATA, EXTRACT, LD-LD, MEM Designed for testing leakage related to consecutive loads (of a byte) at fixed addresses in RAM
SeqMEM.LD.7 v7m stm32f1 DATA, EXTRACT, LD-LD, MEM Designed for testing leakage related to consecutive loads (of a half-word) at fixed addresses in RAM
SeqMEM.LD.8 v7m stm32f1 DATA, EXTRACT, LD-LD, MEM Designed for testing leakage related to consecutive loads (of a half-word) at fixed addresses in RAM
SeqMEM.LD.ST.1 v7m stm32f1 DATA, LD-ST, MEM Designed for testing leakage when alternating ldr and str
SeqMEM.LD.ST.2 v7m stm32f1 DATA, LD-ST, MEM Designed for testing leakage when alternating ldr and str
SeqMEM.LD.ST.3 v7m stm32f1 DATA, LD-ST, MEM Designed for testing leakage when alternating ldrb and strb
SeqMEM.LD.ST.4 v7m stm32f1 DATA, LD-ST, MEM Designed for testing leakage when alternating ldrb and strb
SeqMEM.LD.ST.5 v7m stm32f1 DATA, LD-ST, MEM Designed for testing leakage when alternating ldrb and strb
SeqMEM.LD.ST.6 v7m stm32f1 DATA, LD-ST, MEM Designed for testing leakage when alternating ldrb and strb
SeqMEM.LD.ST.7 v7m stm32f1 DATA, LD-ST, MEM Designed for testing leakage when alternating ldrb and strb
SeqMEM.LD.ST.8 v7m stm32f1 DATA, LD-ST, MEM Designed for testing leakage when alternating ldrb and strb
SeqMEM.LD.UA.1 v7m stm32f1 DATA, LD-LD, MEM, UNALIGNED Designed for testing leakage related to consecutive unaligned loads at fixed addresses in RAM
SeqMEM.LD.UA.2 v7m stm32f1 DATA, LD-LD, MEM, UNALIGNED Designed for testing leakage related to consecutive unaligned loads at fixed addresses in RAM separated by a XOR
SeqMEM.LDD.1 v7m stm32f1 DATA, LDD, MEM Designed for testing leakage related to load double instruction and to consecutive load-double instruction at fixed addresses in RAM
SeqMEM.LDD.2 v7m stm32f1 DATA, LDD, MEM Designed for testing leakage related to load double instruction and to consecutive load-double instruction at fixed addresses in RAM
SeqMEM.ST.1 v7m stm32f1 DATA, MEM, ST-ST Designed for testing leakage related to successive store instructions with different addressing mode. Aligned accesses
SeqMEM.ST.2 v7m stm32f1 DATA, MEM, ST-ST Designed for testing leakage related to successive store instructions with different addressing mode. Aligned accesses
SeqMEM.ST.3 v7m stm32f1 DATA, MEM, ST-ST Designed for testing leakage related to successive store instructions with different addressing mode. Aligned accesses
SeqMEM.ST.4 v7m stm32f1 DATA, MEM, ST-ST Designed for testing leakage related to successive store instructions with different addressing mode. Aligned accesses
SeqMEM.ST.5 v7m stm32f1 DATA, MEM, ST-ST Designed for testing leakage related to successive store instructions with different size. Aligned accesses
SeqMEM.ST.6 v7m stm32f1 DATA, MEM, ST-ST Designed for testing leakage related to successive store instructions with different size. Aligned accesses
SeqMEM.ST.WB.1 v7m stm32f1 DATA, MEM, ST-ST, WB Designed for testing leakage related to consecutive stores (of words) at the same fixed addresse Str A + 0, Str A + 64, Str A + 0, Str A + 64
SeqMEM.ST.WB.2 v7m stm32f1 DATA, MEM, ST-ST, WB Designed for testing leakage related to consecutive stores (of words) at the same fixed addresse Str A + 0, Str A + 64, Str A + 0, Str A + 64
SeqMEM.ST.WB.3 v7m stm32f1 DATA, MEM, ST-ST, WB Designed for testing leakage related to consecutive stores (of a byte) at the same fixed addresse Str A + 0, Str A + 64, Str A + 0, Str A + 64
SeqWB.r0 v7m stm32f1 ALU, EOR, REG-WB Designed for testing leakage related to consecutive writes in a register (R0) of the register file
SeqWB.r0.byte.1 v7m stm32f1 ALU, EOR, REG-WB Designed for testing leakage related to consecutive writes of one byte in registers (R0 and R6) of the register file
SeqWB.r0.byte.2 v7m stm32f1 ALU, EOR, REG-WB Designed for testing leakage related to consecutive writes of one byte in registers (R0 and R6) of the register file
SeqWB.r0.byte.3 v7m stm32f1 ALU, EOR, REG-WB Designed for testing leakage related to consecutive writes of one byte in registers (R0 and R6) of the register file
SeqWB.r4 v6m, v7m stm32f1 ALU, EOR, REG-WB Designed for testing leakage related to consecutive writes in a register (R4) of the register file
SeqWB.r5 v7m stm32f1 ALU, EOR, REG-WB Designed for testing leakage related to consecutive writes in a register (R5) of the register file
SeqWB.r7 v7m stm32f1 ALU, EOR, REG-WB Designed for testing leakage related to consecutive writes in a register (R7) of the register file

20 / 29

Leakage Test Vectors

https://www-soc.lip6.fr/armistice
https://www-soc.lip6.fr/armistice

Leakage without any link to the data manipulated by
instructions !

Instruction encodings (16-bit versus 32-bit) can impact
leakage

Part of immediate in the encoding can be used to read
the register bank

Forwarding mechanism

Intra-word leakage in the LSU

The required number of traces varies with the source of
leakage

...

We did not have the RTL version corresponding to the CPU
of our target !

xor-ldr16bit-xor

-50

0

50

100

150

200

250

5 10 15 20 25 30 35 40 45

T-
Te

st
 V

al
ue

Time (sample)

Op0 ^ Op1
Op0 ^ Op2
Op0 ^ Op3
Op1 ^ Op2
Op1 ^ Op3
Op2 ^ Op3

xor-ldr32bit-xor

-50

0

50

100

150

200

250

5 10 15 20 25 30 35 40 45

T-
Te

st
 V

al
ue

Time (sample)

Op0 ^ Op1
Op0 ^ Op2
Op0 ^ Op3
Op1 ^ Op2
Op1 ^ Op3
Op2 ^ Op3

21 / 29

Findings Using Leakage Vectors

BS

+

+

MuxA

MuxB

MuxRegA

MuxRegB

MuxRegAddr1

MuxRegAddr2

RegA

RegB

RegImm

RegAddr1

RegAddr2

Addr Adder

Data Adder

MuxBS

ALUOut

BusD

DataReg
MuxDataReg

MuxDataWrite

MuxDataAdder#imm / sh

#imm

<<

sh

Addr DataOut DataIn

E
xt

ra
ct

io
n

Fo
rm

a
tt

in
g

Port D

Port A

Port B

DEC EXE1

EXE2

22 / 29

Arm Cortex-M3: Exemple

BS

+

+

MuxA

MuxB

MuxRegA

MuxRegB

MuxRegAddr1

MuxRegAddr2

RegA

RegB

RegImm

RegAddr1

RegAddr2

Addr Adder

Data Adder

MuxBS

ALUOut

BusD

DataReg
MuxDataReg

MuxDataWrite

MuxDataAdder#imm / sh

#imm

<<

sh

Addr DataOut DataIn

E
xt

ra
ct

io
n

Fo
rm

a
tt

in
g

Port D

Port A

Port B

m1

m0

eor r6, r4, r5

r4: m1
r5: m0
r6: 0
r7: k ⊕ m0
r8: 0

DEC EXE1

EXE2

PortA:

PortB

MuxRegA / RegA:

MuxRegB / RegB:

ALUOut

m1

m0

m1

m0

22 / 29

Arm Cortex-M3: Exemple

BS

+

+

MuxA

MuxB

MuxRegA

MuxRegB

MuxRegAddr1

MuxRegAddr2

RegA

RegB

RegImm

RegAddr1

RegAddr2

Addr Adder

Data Adder

MuxBS

ALUOut

BusD

DataReg
MuxDataReg

MuxDataWrite

MuxDataAdder#imm / sh

#imm

<<

sh

Addr DataOut DataIn

E
xt

ra
ct

io
n

Fo
rm

a
tt

in
g

Port D

Port A

Port B

r4: m1
r5: m0
r6: 0
r7: k ⊕ m0
r8: 0

eor r6, r4, r5

0

k ⊕ m0

eor r8, r6, r7

m1

m0

m1 ⊕ m0m1 ⊕ m0

DEC EXE1

EXE2

PortA:

PortB

MuxRegA / RegA:

MuxRegB / RegB:

ALUOut

m1

m0

m1

m0

m1 ⊕ m0

0

k ⊕ m0

m1 ⊕ m0

k ⊕ m0

22 / 29

Arm Cortex-M3: Exemple

BS

+

+

MuxA

MuxB

MuxRegA

MuxRegB

MuxRegAddr1

MuxRegAddr2

RegA

RegB

RegImm

RegAddr1

RegAddr2

Addr Adder

Data Adder

MuxBS

ALUOut

BusD

DataReg
MuxDataReg

MuxDataWrite

MuxDataAdder#imm / sh

#imm

<<

sh

Addr DataOut DataIn

E
xt

ra
ct

io
n

Fo
rm

a
tt

in
g

Port D

Port A

Port B

r4: m1
r5: m0
r6: m1 ⊕ m0
r7: k ⊕ m0
r8: 0

eor r6, r4, r5

k ⊕ m0

eor r8, r6, r7

k ⊕ m1
m1 ⊕ m0

DEC EXE1

EXE2

PortA:

PortB

MuxRegA / RegA:

MuxRegB / RegB:

ALUOut

m1

m0

m1

m0

m1 ⊕ m0

0

k ⊕ m0

m1 ⊕ m0

k ⊕ m0

k ⊕ m1

22 / 29

Arm Cortex-M3: Exemple

BS

+

+

MuxA

MuxB

MuxRegA

MuxRegB

MuxRegAddr1

MuxRegAddr2

RegA

RegB

RegImm

RegAddr1

RegAddr2

Addr Adder

Data Adder

MuxBS

ALUOut

BusD

DataReg
MuxDataReg

MuxDataWrite

MuxDataAdder#imm / sh

#imm

<<

sh

Addr DataOut DataIn

E
xt

ra
ct

io
n

Fo
rm

a
tt

in
g

Port D

Port A

Port B

r4: m1
r5: m0
r6: m1 ⊕ m0
r7: k ⊕ m0
r8: k ⊕ m1

eor r6, r4, r5
eor r8, r6, r7

DEC EXE1

EXE2

PortA:

PortB

MuxRegA / RegA:

MuxRegB / RegB:

ALUOut

m1

m0

m1

m0

m1 ⊕ m0

0

k ⊕ m0

m1 ⊕ m0

k ⊕ m0

k ⊕ m1

m1

k

m0

k

k ⊕ m0

22 / 29

Arm Cortex-M3: Exemple

 Arm Cortex-M3

 Arm ISA

BS

+

+
<<

Input
File
.exe

Execution Trace
Processor
Model

...
eor r6, r4, r5
eor r8, r6, r7
...

Port A:
m1 ⊕	0

Port B:
m0 ⊕	(k ⊕ m0)
...

Expression
Leakage
Analyzer

Results

Symbolic
Execution
Engine

Execution
Trace
Generator

Expressions
To Verify:

Port A:
No Leakage
Port B:
Leakage
...

MemorySymbolic
Variables
(Secret,
Mask,
Public)

Leakage
Model

Entry
Point

Secret
Leakage
List

23 / 29

ARMISTICE Framework

Instructions Leaks: expr. name
I1 and.w r5, r2, r1 MuxRegA, RegA: e0

RegB: e1
I2 ands r0, r1 PortA, RegA: e2

AluOut: e3
I3 ands r3, r2 AluOut: e4
I4 eors r4, r5 RegB: e5
I5 eors r0, r7 AluOut: e6
I6 eors r4, r3 AluOut: e7
I7 str r0, [r6, #0] -
I8 str r4, [r6, #4] PortB, RegB, DataReg,

DataOut, BufferMem: e7

Nom Expression Fuites
e0 a0 · b1 ⊕ a1 a, c
e1 a0 · b1 ⊕ b0 b, c
e2 a0 ⊕ a1 a, c
e3 a0 · b0 ⊕ a1 · b0 a, c
e4 a0 · b0 ⊕ a1 · b1 a, b, c
e5 a1 · b0 ⊕ b1 b, c
e6 a0 · b0 ⊕ a0 · b1 ⊕ a1 · b0 a, b, c
e7 a0 · b0 ⊕ a0 · b1 ⊕ a1 · b0 ⊕ a1 · b1 a, b, c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

80 90 100 110 120 130 140

C
o

rr
e

la
ti
o

n
 (

5
0

0
0

0
 t
ra

c
e

s
)

Time (sample)

a = a0 ^ a1
b = b0 ^ b1
c = c0 ^ c1

e0 e0, e1 e2, e3 e5 e6 e7 e7 e7 e7 e7e4
e2

P
ip

el
in

e
 s

ta
ge

s DEC I1 I2 I3 I4 I5 I6 I7 I8
EXE1 I1 I2 I3 I4 I5 I6 I7 I8
EXE2 I7 I8
MEM I7 I8

Expressions

24 / 29

Back on the Leaking “ISW And”

8 masked applications from the litterature

Results summary

Absence of leakage in the value based model for correct masking schemes

At least one secret leakage due to micro-architecture in all programs, even those designed to be
secured w.r.t. the Arm Cortex-M3 micro-architecture (Dilithium AND and A2B)

At least one leakage for 22 out of 27 modeled components

25 / 29

ARMISTICE Results Validation

Manual analysis of the leakage resulting from the first round of the Key Schedule
8 considered expressions (simplest ones)
Experimental leakage assessment using specific t-test with 500,000 traces

-50

0

50

100

150

200

250

300

350

200 250 300 350 400 450 500
-3

-2

-1

0

1

2

3

4

5

200 250 300 350 400 450 500
-50

0

50

100

150

200

250

200 250 300 350 400 450 500
-50

0

50

100

150

200

250

200 250 300 350 400 450 500

-50

0

50

100

150

200

250

200 250 300 350 400 450 500
-50

0

50

100

150

200

250 300 350 400 450 500 550 600
-200

0

200

400

600

800

1000

1200

200 250 300 350 400 450 500
-200

0

200

400

600

800

1000

1200

200 250 300 350 400 450 500

Key[12] ^ Key[15] (ex0) Key[12] ^ Key[14] (ex1) Key[14] ^ Key[15] (ex2) SBox[Key[12]] (ex3)

SBox[Key[14]] (ex4) SBox[Key[15]] (ex5) SBox[Key[12]] ^ SBox[Key[15]] (ex6) SBox[Key[14]] ^ SBox[Key[15]] (ex7)

26 / 29

Accuracy and Exploitability (1/2)

Manual analysis of the leakage resulting from the first round of the Key Schedule
8 considered expressions (simplest ones)
Experimental leakage assessment using specific t-test with 500,000 traces

-50

0

50

100

150

200

250

300

350

200 250 300 350 400 450 500
-3

-2

-1

0

1

2

3

4

5

200 250 300 350 400 450 500
-50

0

50

100

150

200

250

200 250 300 350 400 450 500
-50

0

50

100

150

200

250

200 250 300 350 400 450 500

-50

0

50

100

150

200

250

200 250 300 350 400 450 500
-50

0

50

100

150

200

250 300 350 400 450 500 550 600
-200

0

200

400

600

800

1000

1200

200 250 300 350 400 450 500
-200

0

200

400

600

800

1000

1200

200 250 300 350 400 450 500

Key[12] ^ Key[15] (ex0) Key[12] ^ Key[14] (ex1) Key[14] ^ Key[15] (ex2) SBox[Key[12]] (ex3)

SBox[Key[14]] (ex4) SBox[Key[15]] (ex5) SBox[Key[12]] ^ SBox[Key[15]] (ex6) SBox[Key[14]] ^ SBox[Key[15]] (ex7)

26 / 29

Accuracy and Exploitability (1/2)

Leakages found but not observed
8-bit transition in a GPR, not observable
8-bit transition on Bus B, not observable
Stall cycle from the memory, could be removed with a better memory model

Leveraging ARMISTICE output
Addition of carefully designed instructions to clean the part of the data path involved in the leaking
transition

-6

-4

-2

0

2

4

6

0 100 200 300 400 500 600 700 800 900 1000

T-
Te

st
 V

al
ue

 (
50

00
00

 tr
ac

es
)

Time (sample)

ex0
ex1
ex2
ex3

ex4
ex5
ex6
ex7

27 / 29

Accuracy and Exploitability (2/2)

Leakages found but not observed
8-bit transition in a GPR, not observable
8-bit transition on Bus B, not observable
Stall cycle from the memory, could be removed with a better memory model

Leveraging ARMISTICE output
Addition of carefully designed instructions to clean the part of the data path involved in the leaking
transition

-6

-4

-2

0

2

4

6

0 100 200 300 400 500 600 700 800 900 1000

T-
Te

st
 V

al
ue

 (
50

00
00

 tr
ac

es
)

Time (sample)

ex0
ex1
ex2
ex3

ex4
ex5
ex6
ex7

27 / 29

Accuracy and Exploitability (2/2)

ARMISTICE
A framework for formally proving the absence of secret leakage in a masked code

Based on the micro-architectural details of a Arm Cortex-M3 core and a memory model

Model close to reality, good match between found leakages and observed leakages

Locates secret leakages in time and space along with the corresponding expressions, which in turn can
help remove them

Future work

Avoid the manual generation of the micro-architecture model
⇒ Automate the verification from a RTL description, a binary code and information on shares (secrets
and masks) and sources of randoms

Consider glitches

⇒ Noé Amiot, current PhD on this topic at LIP6, stay tuned !

28 / 29

Conclusion and Future Work

Thank you

and many thanks to Quentin Meunier4, Noé Amiot 4 and Simon Tollec 5 for their slides !

4. LIP6/Sorbonne University
5. Thales

29 / 29

Barthe, G., Belaïd, S., Cassiers, G., Fouque, P.-A., Grégoire, B., and Standaert, F.-X. (2019).
maskverif : Automated verification of higher-order masking in presence of physical defaults.
In Computer Security – ESORICS 2019 : 24th European Symposium on Research in Computer
Security, Luxembourg, September 23–27, 2019, Proceedings, Part I, page 300–318, Berlin, Heidelberg.
Springer-Verlag.

Ben El Ouahma, I., Meunier, Q. L., Heydemann, K., and Encrenaz, E. (2019).
Side-channel robustness analysis of masked assembly codes using a symbolic approach.
Journal of Cryptographic Engineering, 9 :231–242.

Brier, E., Clavier, C., and Olivier, F. (2004).
Correlation power analysis with a leakage model.
In Joye, M. and Quisquater, J.-J., editors, CHES 2004, volume 3156 of LNCS, pages 16–29. Springer,
Berlin, Heidelberg.

References I

Corre, Y. L., Großschädl, J., and Dinu, D. (2018).
Micro-architectural power simulator for leakage assessment of cryptographic software on ARM
Cortex-M3 processors.
In Fan, J. and Gierlichs, B., editors, COSADE 2018, volume 10815 of LNCS, pages 82–98. Springer,
Cham.

De Grandmaison, A., Heydemann, K., and Meunier, Q. L. (2022).
Armistice : Microarchitectural leakage modeling for masked software formal verification.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 41(11) :3733–3744.

Gross, H., Mangard, S., and Korak, T. (2016).
Domain-oriented masking : Compact masked hardware implementations with arbitrary protection order.
In Proceedings of the 2016 ACM Workshop on Theory of Implementation Security, TIS ’16, page 3,
New York, NY, USA. Association for Computing Machinery.

Ishai, Y., Sahai, A., and Wagner, D. (2003).
Private circuits : Securing hardware against probing attacks.
In Annual International Cryptology Conference, pages 463–481. Springer.

References II

Kocher, P. C., Jaffe, J., and Jun, B. (1999).
Differential power analysis.
In Wiener, M. J., editor, CRYPTO’99, volume 1666 of LNCS, pages 388–397. Springer, Berlin,
Heidelberg.

Mangard, S., Oswald, E., and Popp, T. (2010).
Power Analysis Attacks : Revealing the Secrets of Smart Cards.
Springer Publishing Company, Incorporated, 1st edition.

McCann, D., Oswald, E., and Whitnall, C. (2017).
Towards practical tools for side channel aware software engineering : ’grey box’ modelling for instruction
leakages.
In Kirda, E. and Ristenpart, T., editors, USENIX Security 2017, pages 199–216. USENIX Association.

Meunier, Q. and Taleb, A. (2023).
Verifmsi : Practical verification of hardware and software masking schemes implementations.
In 20th International Conference on Security and Cryptography, volume 1, pages 520–527. SciTePress.

References III

Meunier, Q. L., Pons, E., and Heydemann, K. (2023).
Leakageverif : Efficient and scalable formal verification of leakage in symbolic expressions.
volume 49, page 3359‚Äì3375. IEEE Press.

Müller, N. and Moradi, A. (2022).
PROLEAD A probing-based hardware leakage detection tool.
IACR TCHES, 2022(4) :311–348.

Nikova, S., Rechberger, C., and Rijmen, V. (2006).
Threshold implementations against side-channel attacks and glitches.
In Ning, P., Qing, S., and Li, N., editors, Information and Communications Security, pages 529–545,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Shelton, M. A., Samwel, N., Batina, L., Regazzoni, F., Wagner, M., and Yarom, Y. (2021).
Rosita : Towards automatic elimination of power-analysis leakage in ciphers.
In NDSS 2021. The Internet Society.

References IV

	Background on Side-Channel Attacks
	Masked Implementation Verification
	Microarchitecture modelling for masked software verification

